JP
Jared Pitts
Author with expertise in Coronavirus Disease 2019 Research
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
8
(100% Open Access)
Cited by:
494
h-index:
12
/
i10-index:
12
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Remdesivir Inhibits SARS-CoV-2 in Human Lung Cells and Chimeric SARS-CoV Expressing the SARS-CoV-2 RNA Polymerase in Mice

Andrea Pruijssers et al.Jul 1, 2020
+27
A
L
A
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the novel viral disease COVID-19. With no approved therapies, this pandemic illustrates the urgent need for broad-spectrum antiviral countermeasures against SARS-CoV-2 and future emerging CoVs. We report that remdesivir (RDV) potently inhibits SARS-CoV-2 replication in human lung cells and primary human airway epithelial cultures (EC50 = 0.01 μM). Weaker activity is observed in Vero E6 cells (EC50 = 1.65 μM) because of their low capacity to metabolize RDV. To rapidly evaluate in vivo efficacy, we engineered a chimeric SARS-CoV encoding the viral target of RDV, the RNA-dependent RNA polymerase of SARS-CoV-2. In mice infected with the chimeric virus, therapeutic RDV administration diminishes lung viral load and improves pulmonary function compared with vehicle-treated animals. These data demonstrate that RDV is potently active against SARS-CoV-2 in vitro and in vivo, supporting its further clinical testing for treatment of COVID-19.
96

Remdesivir potently inhibits SARS-CoV-2 in human lung cells and chimeric SARS-CoV expressing the SARS-CoV-2 RNA polymerase in mice

Andrea Pruijssers et al.Apr 27, 2020
+28
B
M
A
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in 2019 as the causative agent of the novel pandemic viral disease COVID-19. With no approved therapies, this pandemic illustrates the urgent need for safe, broad-spectrum antiviral countermeasures against SARS-CoV-2 and future emerging CoVs. We report that remdesivir (RDV), a monophosphoramidate prodrug of an adenosine analog, potently inhibits SARS-CoV-2 replication in human lung cells and primary human airway epithelial cultures (EC 50 = 0.01 μM). Weaker activity was observed in Vero E6 cells (EC 50 = 1.65 μM) due to their low capacity to metabolize RDV. To rapidly evaluate in vivo efficacy, we engineered a chimeric SARS-CoV encoding the viral target of RDV, the RNA-dependent RNA polymerase, of SARS-CoV-2. In mice infected with chimeric virus, therapeutic RDV administration diminished lung viral load and improved pulmonary function as compared to vehicle treated animals. These data provide evidence that RDV is potently active against SARS-CoV-2 in vitro and in vivo , supporting its further clinical testing for treatment of COVID-19.
96
Citation20
0
Save
19

Remdesivir and GS-441524 retain antiviral activity against Delta, Omicron, and other emergent SARS-CoV-2 variants

Jared Pitts et al.Feb 10, 2022
+15
J
J
J
Abstract Genetic variation of SARS-CoV-2 has resulted in the emergence and rapid spread of multiple variants throughout the pandemic, of which Omicron is currently the predominant variant circulating worldwide. SARS-CoV-2 variants of concern or interest (VOC/VOI) have evidence of increased viral transmission, disease severity, or decreased effectiveness of vaccines and neutralizing antibodies. Remdesivir (RDV, VEKLURY ® ) is a nucleoside analog prodrug and the first FDA-approved antiviral treatment of COVID-19. Here we present a comprehensive antiviral activity assessment of RDV and its parent nucleoside, GS-441524, against 10 current and former SARS-CoV-2 VOC/VOI clinical isolates by nucleoprotein ELISA and plaque reduction assay. Delta and Omicron variants remained susceptible to RDV and GS-441524, with EC 50 values 0.31 to 0.62-fold of those observed against the ancestral WA1 isolate. All other tested variants exhibited EC 50 values ranging from 0.15 to 2.3-fold of the observed EC 50 values against WA1. Analysis of nearly 6 million publicly available variant isolate sequences confirmed that Nsp12, the RNA-dependent RNA polymerase (RdRp) target of RDV and GS-441524, is highly conserved across variants with only 2 prevalent changes (P323L and G671S). Using recombinant viruses, both RDV and GS-441524 retained potency against all viruses containing frequent variant substitutions or their combination. Taken together, these results highlight the conserved nature of SARS-CoV-2 Nsp12 and provide evidence of sustained SARS-CoV-2 antiviral activity of RDV and GS-441524 across the tested variants. The observed pan-variant activity of RDV supports its continued use for the treatment of COVID-19 regardless of the SARS-CoV-2 variant.
19
Citation2
0
Save
0

Structure of anellovirus-like particles reveal a mechanism for immune evasion

Shu-Hao Liou et al.Aug 22, 2024
+15
N
R
S
Abstract Anelloviruses are nonpathogenic viruses that comprise a major portion of the human virome. Despite being ubiquitous in the human population, anelloviruses (ANVs) remain poorly understood. Basic features of the virus, such as the identity of its capsid protein and the structure of the viral particle, have been unclear until now. Here, we use cryogenic electron microscopy to describe the first structure of an ANV-like particle. The particle, formed by 60 jelly roll domain-containing ANV capsid proteins, forms an icosahedral particle core from which spike domains extend to form a salient part of the particle surface. The spike domains come together around the 5-fold symmetry axis to form crown-like features. The base of the spike domain, the P1 subdomain, shares some sequence conservation between ANV strains while a hypervariable region, forming the P2 subdomain, is at the spike domain apex. We propose that this structure renders the particle less susceptible to antibody neutralization by hiding vulnerable conserved domains while exposing highly diverse epitopes as immunological decoys, thereby contributing to the immune evasion properties of anelloviruses. These results shed light on the structure of anelloviruses and provide a framework to understand their interactions with the immune system.
0

Discovery and Synthesis of GS-7682, a Novel Prodrug of a 4′-CN-4-Aza-7,9-DideazaadenosineC-Nucleoside with Broad-Spectrum Potency Against Pneumo- and Picornaviruses and Efficacy in RSV-Infected African Green Monkeys

Dustin Siegel et al.Apr 19, 2024
+39
M
J
D
Abstract Acute respiratory viral infections (ARVI), such as pneumovirus and respiratory picornavirus infections, exacerbate disease in COPD and asthma patients. A research program targeting respiratory syncytial virus (RSV) led to the discovery of GS-7682 ( 1 ) a novel phosphoramidate prodrug of a 4′-CN-4-aza-7,9-dideazaadenosine C -nucleoside GS-646089 ( 2 ) with broad antiviral activity against RSV EC 50 = 3-46 nM, human metapneumovirus (hMPV) EC 50 = 210 ± 50 nM, human rhinovirus (RV) EC 50 = 54-61 nM, and enterovirus (EV) EC 50 = 83-90 nM. Prodrug optimization for cellular potency and lung cell metabolism identified the 5’-methyl(( S )-hydroxy(phenoxy)phosphoryl)-L-alaninate in combination with 2’,3’-diisobutyrate promoieties as optimal for high intracellular triphosphate formation in vitro and in vivo. 1 demonstrated significant reductions of viral loads in the lower respiratory tract of RSV-infected African green monkeys when administered once daily via intratracheal nebulized aerosol. Together these finding support additional evaluation of 1 and its analogs as a potential therapeutic for pneumo- and picornaviruses.
6

Anellovirus Structure Reveals a Mechanism for Immune Evasion

Shu-Hao Liou et al.Jul 2, 2022
+14
N
K
S
Abstract The significant impact of the human virome on human physiology is beginning to emerge thanks to modern sequencing methods and bioinformatic tools 1 . Anelloviruses, the principal constituent of the commensal human virome, are universally acquired in infancy and found throughout the body 2,3,4 . Since the discovery of the original torque teno virus in 1997 5 , three genera of the Anelloviridae family, each extremely diverse genetically, have been found in humans. These viruses elicit weak immune responses that permit multiple strains to co-exist and persist for years in a typical individual 6 . However, because they do not cause disease 7 and due to the lack of an in vitro culture system, anelloviruses remain poorly understood 8,9 . Basic features of the virus, such as the identity of its structural protein, have been unclear until now. Here, we describe the first structure of an anellovirus particle, which includes a jelly roll domain that forms a 60-mer icosahedral particle core from which spike domains extend to form a salient part of the particle surface. The spike domains come together around the 5-fold symmetry axes to form crown-like features. Relatively conserved patches of amino acids are near the base of the spike domain while a hypervariable region is at the apex. We propose that this structure renders the particle less susceptible to antibody neutralization by hiding vulnerable conserved epitopes while exposing highly diverse epitopes as immunological decoys, thereby contributing to the immune evasion properties of anelloviruses. This would contrast with viruses such as beak and feather disease virus, canine parvovirus or adeno-associated virus which lack such pronounced surface features. These results shed light on the structure of anelloviruses and provide a framework to understand their interactions with the immune system.
25

Discovery of GS-5245 (Obeldesivir), an Oral Prodrug of Nucleoside GS-441524 that Exhibits Antiviral Efficacy in SARS-CoV-2 Infected African Green Monkeys

Richard Mackman et al.Apr 28, 2023
+29
D
R
R
Abstract Remdesivir 1 is an amidate prodrug that releases the monophosphate of nucleoside GS-441524 ( 2 ) into lung cells thereby forming the bioactive triphosphate 2-NTP . 2-NTP , an analog of ATP, inhibits the SARS-CoV-2 RNA-dependent RNA polymerase replication and transcription of viral RNA. Strong clinical results for 1 have prompted interest in oral approaches to generate 2-NTP . Here we describe the discovery of a 5’-isobutyryl ester prodrug of 2 ( GS-5245, Obeldesivir, 3 ) that has low cellular cytotoxicity and three to seven-fold improved oral delivery of 2 in monkeys. Prodrug 3 is cleaved pre-systemically to provide high systemic exposures of 2 that overcome its less efficient metabolism to 2-NTP leading to strong SARS-CoV-2 antiviral efficacy in an African green monkey infection model. Exposure-based SARS-CoV-2 efficacy relationships resulted in an estimated clinical dose of 350-400 mg twice-daily. Importantly, all SARS-CoV-2 variants remain susceptible to 2 which supports development of 3 as a promising COVID-19 treatment.
0

Mechanism and spectrum of inhibition of a 4’-cyano modified nucleotide analog against diverse RNA polymerases of prototypic respiratory RNA viruses

Calvin Gordon et al.Apr 23, 2024
+7
J
D
C
ABSTRACT The development of safe and effective broad-spectrum antivirals that target the replication machinery of respiratory viruses is of high priority in pandemic preparedness programs. Here, we studied the mechanism of action of a newly discovered nucleotide analog against diverse RNA-dependent RNA polymerases (RdRp) of prototypic respiratory viruses. GS-646939 is the active 5′-triphosphate (TP) metabolite of a 4ʹ-cyano modified C -adenosine analog phosphoramidate prodrug GS-7682. Enzyme kinetics show that the RdRps of human rhinovirus type 16 (HRV-16) and enterovirus 71 (EV-71) incorporate GS-646939 with unprecedented selectivity; GS-646939 is incorporated 20-50-fold more efficiently than its natural ATP counterpart. The RdRp complex of respiratory syncytial virus (RSV) and human metapneumovirus (HMPV) incorporate GS-646939 and ATP with similar efficiency. In contrast, influenza B RdRp shows a clear preference for ATP and human mitochondrial RNA polymerase (h-mtRNAP) does not show significant incorporation of GS-646939. Once incorporated into the nascent RNA strand, GS-646939 acts as a chain-terminator although higher NTP concentrations can partially overcome inhibition for some polymerases. Modeling and biochemical data suggest that the 4ʹ-modification inhibits RdRp translocation. Comparative studies with GS-443902, the active triphosphate form of the 1′-cyano modified prodrugs remdesivir and obeldesivir, reveal not only different mechanisms of inhibition, but also differences in the spectrum of inhibition of viral polymerases. In conclusion, 1ʹ-cyano and 4ʹ-cyano modifications of nucleotide analogs provide complementary strategies to target the polymerase of several families of respiratory RNA viruses.