JP
John Poirier
Author with expertise in Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated proteins
NYU Langone Health, Memorial Sloan Kettering Cancer Center, New York University
+ 9 more
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
14
(64% Open Access)
Cited by:
46
h-index:
54
/
i10-index:
92
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
32

Functional interrogation of a SARS-CoV-2 host protein interactome identifies unique and shared coronavirus host factors

Hans-Heinrich Hoffmann et al.Oct 24, 2023
+15
F
W
H
SUMMARY The ongoing SARS-CoV-2 pandemic has devastated the global economy and claimed nearly one million lives, presenting an urgent global health crisis. To identify host factors required for infection by SARS-CoV-2 and seasonal coronaviruses, we designed a focused high-coverage CRISPR-Cas9 library targeting 332 members of a recently published SARS-CoV-2 protein interactome. We leveraged the compact nature of this library to systematically screen four related coronaviruses (HCoV-229E, HCoV-NL63, HCoV-OC43 and SARS-CoV-2) at two physiologically relevant temperatures (33 °C and 37 °C), allowing us to probe this interactome at a much higher resolution relative to genome scale studies. This approach yielded several new insights, including unexpected virus and temperature specific differences in Rab GTPase requirements and GPI anchor biosynthesis, as well as identification of multiple pan-coronavirus factors involved in cholesterol homeostasis. This coronavirus essentiality catalog could inform ongoing drug development efforts aimed at intercepting and treating COVID-19, and help prepare for future coronavirus outbreaks. HIGHLIGHTS Focused CRISPR screens targeting host factors in the SARS-CoV-2 interactome were performed for SARS-CoV-2, HCoV-229E, HCoV-NL63, and HCoV-OC43 coronaviruses. Focused interactome CRISPR screens achieve higher resolution compared to genome-wide screens, leading to the identification of critical factors missed by the latter. Parallel CRISPR screens against multiple coronaviruses uncover host factors and pathways with pan-coronavirus and virus-specific functional roles. The number of host proteins that interact with a viral bait protein is not proportional to the number of functional interactors. Novel SARS-CoV-2 host factors are expressed in relevant cell types in the human airway.
32
Citation20
0
Save
21

Genome-scale identification of SARS-CoV-2 and pan-coronavirus host factor networks

William Schneider et al.Oct 24, 2023
+12
H
J
W
SUMMARY The COVID-19 pandemic has claimed the lives of more than one million people worldwide. The causative agent, SARS-CoV-2, is a member of the Coronaviridae family, which are viruses that cause respiratory infections of varying severity. The cellular host factors and pathways co-opted by SARS-CoV-2 and other coronaviruses in the execution of their life cycles remain ill-defined. To develop an extensive compendium of host factors required for infection by SARS-CoV-2 and three seasonal coronaviruses (HCoV-OC43, HCoV-NL63, and HCoV-229E), we performed parallel genome-scale CRISPR knockout screens. These screens uncovered multiple host factors and pathways with pan-coronavirus and virus-specific functional roles, including major dependency on glycosaminoglycan biosynthesis, SREBP signaling, and glycosylphosphatidylinositol biosynthesis, as well as an unexpected requirement for several poorly characterized proteins. We identified an absolute requirement for the VTT-domain containing protein TMEM41B for infection by SARS-CoV-2 and all other coronaviruses. This human Coronaviridae host factor compendium represents a rich resource to develop new therapeutic strategies for acute COVID-19 and potential future coronavirus spillover events. HIGHLIGHTS Genome-wide CRISPR screens for SARS-CoV-2, HCoV-OC43, HCoV-NL63, and HCoV-229E coronavirus host factors. Parallel genome-wide CRISPR screening uncovered host factors and pathways with pan-coronavirus and virus-specific functional roles. Coronaviruses co-opt multiple biological pathways, including glycosaminoglycan biosynthesis, SREBP signaling, and glycosylphosphatidylinositol biosynthesis and anchoring, among others. TMEM41B - a poorly understood factor with roles in autophagy and lipid mobilization - is a critical pan-coronavirus host factor.
21
Citation11
0
Save
7

TMEM41B is a pan-flavivirus host factor

Hans-Heinrich Hoffmann et al.Oct 24, 2023
+11
K
W
H
Flaviviruses pose a constant threat to human health. These RNA viruses are transmitted by the bite of infected mosquitoes and ticks and regularly cause outbreaks. To identify host factors required for flavivirus infection we performed full-genome loss of function CRISPR-Cas9 screens. Based on these results we focused our efforts on characterizing the roles that TMEM41B and VMP1 play in the virus replication cycle. Our mechanistic studies on TMEM41B revealed that all members of the Flaviviridae family that we tested require TMEM41B. We tested 12 additional virus families and found that SARS-CoV-2 of the Coronaviridae also required TMEM41B for infection. Remarkably, single nucleotide polymorphisms (SNPs) present at nearly twenty percent in East Asian populations reduce flavivirus infection. Based on our mechanistic studies we hypothesize that TMEM41B is recruited to flavivirus RNA replication complexes to facilitate membrane curvature, which creates a protected environment for viral genome replication.TMEM41B and VMP1 are required for both autophagy and flavivirus infection, however, autophagy is not required for flavivirus infection.TMEM41B associates with viral proteins and likely facilitates membrane remodeling to establish viral RNA replication complexes.TMEM41B single nucleotide polymorphisms (SNPs) present at nearly twenty percent in East Asian populations reduce flavivirus infection.TMEM41B-deficient cells display an exaggerated innate immune response upon high multiplicity flavivirus infection.
7
Citation6
0
Save
0

Imaging with [89Zr]Zr-DFO-SC16.56 anti-DLL3 antibody in patients with high-grade neuroendocrine tumours of the lung and prostate: a phase 1/2, first-in-human trial

Salomon Tendler et al.Sep 6, 2024
+11
M
M
S
Delta-like ligand 3 (DLL3) is aberrantly expressed on the surface of small-cell lung cancer (SCLC) and neuroendocrine prostate cancer cells. We assessed the safety and feasibility of the DLL3-targeted imaging tracer [
0
Citation4
0
Save
33

KEAP1 mutation in lung adenocarcinoma promotes immune evasion and immunotherapy resistance

Anastasia‐Maria Zavitsanou et al.Oct 24, 2023
+20
W
H
A
Abstract Lung cancer treatment has benefited greatly from the development of effective immune-based therapies. However, these strategies still fail in a large subset of patients. Tumor-intrinsic mutations can drive immune evasion via recruiting immunosuppressive populations or suppressing anti-tumor immune responses. KEAP1 is one of the most frequently mutated genes in lung adenocarcinoma patients and is associated with poor prognosis and inferior response to all therapies, including checkpoint blockade. Here, we established a novel antigenic lung cancer model and showed that Keap1-mutant tumors promote dramatic remodeling of the tumor immune microenvironment. Combining single-cell technology and depletion studies, we demonstrate that Keap1-mutant tumors diminish dendritic cell and T cell responses driving immunotherapy resistance. Importantly, analysis of KEAP1 mutant patient tumors revealed analogous decrease in dendritic cell and T cell infiltration. Our study provides new insight into the role of KEAP1 mutations in promoting immune evasion and suggests a path to novel immune-based therapeutic strategies for KEAP1 mutant lung cancer. Statement of significance This study establishes that tumor-intrinsic KEAP1 mutations contribute to immune evasion through suppression of dendritic cell and T cell responses, explaining the observed resistance to immunotherapy of KEAP1 mutant tumors. These results highlight the importance of stratifying patients based on KEAP1 status and paves the way for novel therapeutic strategies.
33
Citation3
0
Save
1

Glutamine antagonist DRP-104 suppresses tumor growth and enhances response to checkpoint blockade inKEAP1mutant lung cancer

Ray Pillai et al.Oct 24, 2023
+25
H
S
R
Abstract Loss-of-function mutations in KEAP1 frequently occur in lung cancer and are associated with resistance to standard of care treatment, highlighting the need for the development of targeted therapies. We have previously shown that KEAP1 mutant tumors have increased glutamine consumption to support the metabolic rewiring associated with NRF2 activation. Here, using patient-derived xenograft models and antigenic orthotopic lung cancer models, we show that the novel glutamine antagonist DRP-104 impairs the growth of KEAP1 mutant tumors. We find that DRP-104 suppresses KEAP1 mutant tumor growth by inhibiting glutamine-dependent nucleotide synthesis and promoting anti-tumor CD4 and CD8 T cell responses. Using multimodal single-cell sequencing and ex vivo functional assays, we discover that DRP-104 reverses T cell exhaustion and enhances the function of CD4 and CD8 T cells culminating in an improved response to anti-PD1 therapy. Our pre-clinical findings provide compelling evidence that DRP-104, currently in phase 1 clinical trials, offers a promising therapeutic approach for treating patients with KEAP1 mutant lung cancer. Furthermore, we demonstrate that by combining DRP-104 with checkpoint inhibition, we can achieve suppression of tumor intrinsic metabolism and augmentation of anti-tumor T cell responses.
1
Citation2
0
Save
14

Multi-omic analysis of lung tumors defines pathways activated in neuroendocrine transformation

Àlvaro Quintanal-Villalonga et al.Oct 24, 2023
+25
Y
H
À
ABSTRACT Lineage plasticity, a capacity to reprogram cell phenotypic identity under evolutionary pressure, is implicated in treatment resistance and metastasis in multiple cancers. In lung adenocarcinomas (LUADs) amenable to treatment with targeted inhibitors, transformation to an aggressive neuroendocrine (NE) carcinoma resembling small cell lung cancer (SCLC) is a recognized mechanism of acquired resistance. Defining molecular mechanisms of NE transformation in lung cancer has been limited by a paucity of well annotated pre- and post-transformation clinical samples. We hypothesized that mixed histology LUAD/SCLC tumors may capture cancer cells proximal to, and on either side of, histologic transformation. We performed detailed genomic, epigenomic, transcriptomic and proteomic characterization of combined LUAD/SCLC tumors as well as pre- and post-transformation clinical samples. Our data support that NE transformation is primarily driven by transcriptional reprogramming rather than mutational events. We identify genomic contexts in which NE transformation is favored, including frequent loss of the 3p chromosome arm in pre-transformation LUADs. Consistent shifts in gene expression programs in NE transformation include induction of several stem/progenitor cell regulatory pathways, including upregulation of PRC2 and WNT signaling, and suppression of Notch pathway activity. We observe induction of PI3K/AKT and an immunosuppressive phenotype in NE transformation. Taken together our findings define a novel landscape of potential drivers and therapeutic vulnerabilities of NE transformation in lung cancer.
0

Direct genome editing of patient-derived xenografts using CRISPR-Cas9 enables rapid in vivo functional genomics

Christopher Hulton et al.May 6, 2020
+5
N
E
C
Patient-derived xenografts (PDXs) constitute a powerful set of preclinical models for in vivo cancer research, reflecting the spectrum of genomic alterations and therapeutic liabilities of human cancers. In contrast to either cancer cell lines or genetically engineered mouse models, the utility of PDXs has been limited by the inability to perform targeted genome editing of these tumors. To address this limitation, we have generated a lentiviral platform for CRISPR-Cas9 editing of PDXs using a tightly regulated, inducible Cas9 vector that does not require in vitro culture for selection of transduced cells. We demonstrate the utility of this platform in PDXs (1) to analyze genetic dependencies by targeted gene disruption and (2) to analyze mechanisms of acquired drug resistance by site-specific gene editing using templated homology-directed repair. This flexible system has broad application to other explant models and substantially augments the utility of PDXs as genetically programmable models of human cancer.
0

Lineage reversion drives WNT independence in intestinal cancer

Teng Han et al.May 7, 2020
+10
Y
S
T
The WNT pathway is a fundamental regulator of intestinal homeostasis and hyperactivation of WNT signaling is the major oncogenic driver in colorectal cancer (CRC). To date, there are no described mechanisms that bypass WNT dependence in intestinal tumors. Here, we show that while WNT suppression blocks tumor growth in most organoid and in vivo CRC models, the accumulation of CRC-associated genetic alterations enables drug resistance and WNT-independent growth. In intestinal epithelial cells harboring mutations in KRAS or BRAF, together with disruption of p53 and SMAD4, transient TGFβ exposure drives YAP/TAZ-dependent transcriptional reprogramming and lineage reversion. Acquisition of embryonic intestinal identity is accompanied by a permanent loss of adult intestinal lineages, and long-term WNT-independent growth. This work delineates genetic and microenvironmental factors that drive WNT inhibitor resistance, identifies a new mechanism for WNT-independent CRC growth and reveals how integration of associated genetic alterations and extracellular signals can overcome lineage-dependent oncogenic programs.
0

A Genome-Wide Arrayed CRISPR Screen Reveals PLSCR1 as an Intrinsic Barrier to SARS-CoV-2 Entry

Jérémie Pen et al.Feb 20, 2024
+34
M
G
J
Interferons (IFNs) play a crucial role in the regulation and evolution of host-virus interactions. Here, we conducted a genome-wide arrayed CRISPR knockout screen in the presence and absence of IFN to identify human genes that influence SARS-CoV-2 infection. We then performed an integrated analysis of genes interacting with SARS-CoV-2, drawing from a selection of 67 large-scale studies, including our own. We identified 28 genes of high relevance in both human genetic studies of COVID-19 patients and functional genetic screens in cell culture, with many related to the IFN pathway. Among these was the IFN-stimulated gene PLSCR1. PLSCR1 did not require IFN induction to restrict SARS-CoV-2 and did not contribute to IFN signaling. Instead, PLSCR1 specifically restricted spike-mediated SARS-CoV-2 entry. The PLSCR1-mediated restriction was alleviated by TMPRSS2 over-expression, suggesting that PLSCR1 primarily restricts the endocytic entry route. In addition, recent SARS-CoV-2 variants have adapted to circumvent the PLSCR1 barrier via currently undetermined mechanisms. Our study contributes to understanding the association between PLSCR1 variants and severe COVID-19 cases reported in a recent GWAS.
0
0
Save
Load More