JT
Jenhan Tao
Author with expertise in Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated proteins
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(50% Open Access)
Cited by:
1,001
h-index:
10
/
i10-index:
10
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Engrafted parenchymal brain macrophages differ from microglia in transcriptome, chromatin landscape and response to challenge

Anat Shemer et al.Nov 30, 2018
+13
T
J
A
Microglia are yolk sac-derived macrophages residing in the parenchyma of brain and spinal cord, where they interact with neurons and other glial. After different conditioning paradigms and bone marrow (BM) or hematopoietic stem cell (HSC) transplantation, graft-derived cells seed the brain and persistently contribute to the parenchymal brain macrophage compartment. Here we establish that graft-derived macrophages acquire, over time, microglia characteristics, including ramified morphology, longevity, radio-resistance and clonal expansion. However, even after prolonged CNS residence, transcriptomes and chromatin accessibility landscapes of engrafted, BM-derived macrophages remain distinct from yolk sac-derived host microglia. Furthermore, engrafted BM-derived cells display discrete responses to peripheral endotoxin challenge, as compared to host microglia. In human HSC transplant recipients, engrafted cells also remain distinct from host microglia, extending our finding to clinical settings. Collectively, our data emphasize the molecular and functional heterogeneity of parenchymal brain macrophages and highlight potential clinical implications for HSC gene therapies aimed to ameliorate lysosomal storage disorders, microgliopathies or general monogenic immuno-deficiencies.
0
Citation977
0
Save
1

TruSight Oncology 500: Enabling Comprehensive Genomic Profiling and Biomarker Reporting with Targeted Sequencing

Chen Zhao et al.Oct 22, 2020
+8
S
J
C
Abstract Background As knowledge of mechanisms that drive the development of cancer grows, there has been corresponding growth in therapies specific to a mechanism. While these therapies show improvements in patient outcomes, they can be expensive and are effective only for a subset of patients. These treatments drive interest in research focused on the assignment of cancer therapies based on aberrations in individual genes or biomarkers that assess the broader mutational landscape, including microsatellite instability (MSI) and tumor mutational burden (TMB). Methods Here we describe the TruSight™ Oncology 500 (TSO500; Research Use Only) bioinformatics workflow. This tumor-only approach leverages the next-generation sequencing-based assay TSO500 to enable high fidelity determination of DNA variants across 523 cancer-relevant genes, as well as MSI status and TMB in formalin-fixed paraffin-embedded (FFPE) samples. Results The TSO500 bioinformatic workflow integrates unique molecular identifier (UMI)-based error correction and a dual approach variant filtering strategy that combines statistical modeling of error rates and database annotations to achieve detection of variants with allele frequency approaching 5% with 99.9998% per base specificity and 99% sensitivity in FFPE samples representing a variety of tumor types. TMB determined using the tumor-only workflow of TSO500 correlated well with tumor-normal (N =170, adjusted R 2 =0.9945) and whole-exome sequencing (N=108, adjusted R 2 =0.933). Similarly, MSI status determined by TSO500 showed agreement (N=106, 98% agreement) with a MSI-PCR assay. Conclusion TSO500 is an accurate tumor-only workflow that enables researchers to systematically characterize tumors and identify the next generation of clinical biomarkers.
1
Citation20
0
Save
33

Machine-guided cell-fate engineering

Evan Appleton et al.Oct 14, 2022
+3
S
C
E
A bstract The creation of induced pluripotent stem cells (iPSCs) has enabled scientists to explore the derivation of many types of cells. While there are diverse general approaches for cell-fate engineering, one of the fastest and most efficient approaches is transcription factor (TF) over-expression. However, finding the right combination of TFs to over-express to differentiate iPSCs directly into other cell-types is a difficult task. Here were describe a machine-learning (ML) pipeline, called CellCartographer , for using chromatin accessibility data to design multiplex TF pooled-screens for cell type conversions. We validate this method by differentiating iPSCs into twelve diverse cell types at low efficiency in preliminary screens and then iteratively refining our TF combinations to achieve high efficiency differentiation for six of these cell types in < 6 days. Finally, we functionally characterized engineered iPSC-derived cytotoxic T-cells (iCytoT), regulatory T-cells (iTReg), type II astrocytes (iAstII), and hepatocytes (iHep) to validate functionally accurate differentiation.
33
Citation2
0
Save
13

A Chinese hamster transcription start site atlas that enables targeted editing of CHO cells

Isaac Shamie et al.Oct 10, 2020
+13
K
S
I
ABSTRACT Chinese hamster ovary (CHO) cells, with their human-compatible glycosylation and high protein titers, are the most widely used cells for producing biopharmaceuticals. Engineering gene expression in CHO is key to improving drug quality and affordability. However, engineering gene expression or activating silent genes requires accurate annotation of the underlying regulatory elements and transcription start sites (TSSs). Unfortunately, most TSSs in the Chinese hamster genome were computationally predicted and are frequently inaccurate. Here, we revised TSS annotations for 15,308 Chinese hamster genes and 4,478 non-coding RNAs based on experimental data from CHO-K1 cells and 10 hamster tissues. The experimental realignment and discovery of TSSs now expose previously hidden motifs, such as the TATA box. We further demonstrate, by targeting the glycosyltransferase gene Mgat3 , how accurate annotations readily facilitate activating silent genes by CRISPRa to obtain more human-like glycosylation. Together, we envision our annotation and data will provide a rich resource for the CHO community, improve genome engineering efforts and aid comparative and evolutionary studies.
13
Citation2
0
Save
0

Cell-specific discrimination of desmosterol and desmosterol mimetics confers selective regulation of LXR and SREBP pathways in macrophages

Evan Muse et al.Feb 11, 2018
+14
S
J
E
Activation of liver X receptors (LXRs) with synthetic agonists promotes reverse cholesterol transport and protects against atherosclerosis in mouse models. Most synthetic LXR agonists also cause marked hypertriglyceridemia by inducing the expression of SREBP1c and downstream genes that drive fatty acid biosynthesis. Recent studies demonstrated that desmosterol, an intermediate in the cholesterol biosynthetic pathway that suppresses SREBP processing by binding to SCAP, also binds and activates LXRs and is the most abundant LXR ligand in macrophage foam cells. Here, we explore the potential of increasing endogenous desmosterol production or mimicking its activity as a means of inducing LXR activity while simultaneously suppressing SREBP1c induced hypertriglyceridemia. Unexpectedly, while desmosterol strongly activated LXR target genes and suppressed SREBP pathways in mouse and human macrophages, it had almost no activity in mouse or human hepatocytes in vitro. We further demonstrate that sterol-based selective modulators of LXRs have biochemical and transcriptional properties predicted of desmosterol mimetics and selectively regulate LXR function in macrophages in vitro and in vivo. These studies thereby reveal cell-specific discrimination of endogenous and synthetic regulators of LXRs and SREBPs, providing a molecular basis for dissociation of LXR functions in macrophages from those in liver that lead to hypertriglyceridemia.
0

Diverse motif ensembles specify non-redundant DNA binding activities of AP-1 family members in macrophages

Gregory Fonseca et al.Jun 13, 2018
+9
E
J
G
Mechanisms by which members of the AP-1 family of transcription factors play both redundant and non-redundant biological roles despite recognizing the same DNA sequence remain poorly understood. To address this question, we investigated the molecular functions and genome-wide DNA binding patterns of AP-1 family members in macrophages. ChIP-sequencing showed overlapping and distinct binding profiles for each factor that were remodeled following TLR4 ligation. Development of a machine learning approach that jointly weighs hundreds of DNA recognition elements yielded dozens of motifs predicted to drive factor-specific binding profiles. Machine learning-based predictions were confirmed by analysis of the effects of mutations in genetically diverse mice and by loss of function experiments. These findings provide evidence that non-redundant genomic locations of different AP-1 family members in macrophages largely result from collaborative interactions with diverse, locus-specific ensembles of transcription factors and suggest a general mechanism for encoding functional specificities of their common recognition motif.
0

Natural genetic variation affecting transcription factor spacing at regulatory regions is generally well tolerated

Zeyang Shen et al.Apr 3, 2020
+10
M
N
Z
Regulation of gene expression requires the combinatorial binding of sequence-specific transcription factors (TFs) at promoters and enhancers. Single nucleotide polymorphisms (SNPs) and short insertions and deletions (InDels) can influence gene expression by altering the sequences of TF binding sites. Prior studies also showed that alterations in the spacing between TF binding sites can influence promoter and enhancer activity. However, the relative importance of altered TF spacing has not been systematically analyzed in the context of natural genetic variation. Here, we exploit millions of InDels provided by five diverse strains of mice to globally investigate the effects of altered spacing on TF binding and local histone acetylation in macrophages. We find that spacing alterations resulting from InDels are generally well tolerated in comparison to genetic variants that directly alter TF binding sites. These findings have implications for the interpretation of non-coding genetic variation and comparative analysis of regulatory elements across species.
0

Engrafted parenchymal brain macrophages differ from host microglia in transcriptome, epigenome and response to challenge

Anat Shemer et al.Jul 16, 2018
+14
M
K
A
Microglia are yolk sac-derived macrophages residing in the parenchyma of brain and spinal cord, where they interact with neurons and other glial cells by constantly probing their surroundings with dynamic extensions. Following different conditioning paradigms and bone marrow (BM) / hematopoietic stem cell (HSC) transplantation, graft-derived cells seed the brain and persistently contribute to the parenchymal brain macrophage compartment. Here we establish that these cells acquire over time microglia characteristics, including ramified morphology, longevity, radio-resistance and clonal expansion. However, even following prolonged CNS residence, transcriptomes and epigenomes of engrafted HSC-derived macrophages remain distinct from yolk sac-derived host microglia. Furthermore, BM graft-derived cells display discrete responses to peripheral endotoxin challenge, as compared to host microglia. Also in human HSC transplant recipients, engrafted cells remain distinct from host microglia, extending our finding to clinical settings. Collectively, our data emphasize the molecular and functional heterogeneity of parenchymal brain macrophages and highlight the clinical implications for patients treated by HSC gene therapy.