KC
Karl Clauser
Author with expertise in Prediction of Peptide-MHC Binding Affinity
Broad Institute, Massachusetts Institute of Technology, Bruker (United States)
+ 7 more
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(80% Open Access)
Cited by:
21
h-index:
21
/
i10-index:
33
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
159

SARS-CoV-2 infected cells present HLA-I peptides from canonical and out-of-frame ORFs

Shira Weingarten-Gabbay et al.Oct 24, 2023
+18
S
S
S
T cell-mediated immunity may play a critical role in controlling and establishing protective immunity against SARS-CoV-2 infection; yet the repertoire of viral epitopes responsible for T cell response activation remains mostly unknown. Identification of viral peptides presented on class I human leukocyte antigen (HLA-I) can reveal epitopes for recognition by cytotoxic T cells and potential incorporation into vaccines. Here, we report the first HLA-I immunopeptidome of SARS-CoV-2 in two human cell lines at different times post-infection using mass spectrometry. We found HLA-I peptides derived not only from canonical ORFs, but also from internal out-of-frame ORFs in Spike and Nucleoprotein not captured by current vaccines. Proteomics analyses of infected cells revealed that SARS-CoV-2 may interfere with antigen processing and immune signaling pathways. Based on the endogenously processed and presented viral peptides that we identified, we estimate that a pool of 24 peptides would provide one or more peptides for presentation by at least one HLA allele in 99% of the human population. These biological insights and the list of naturally presented SARS-CoV-2 peptides will facilitate data-driven selection of peptides for immune monitoring and vaccine development.
159
Paper
Citation19
0
Save
0

PANOPLY: A cloud-based platform for automated and reproducible proteogenomic data analysis

D. Mani et al.Jun 6, 2024
+7
R
M
D
ABSTRACT Proteogenomics involves the integrative analysis of genomic, transcriptomic, proteomic and post-translational modification data produced by next-generation sequencing and mass spectrometry-based proteomics. Several publications by the Clinical Proteomic Tumor Analysis Consortium (CPTAC) and others have highlighted the impact of proteogenomics in enabling deeper insight into the biology of cancer and identification of potential drug targets. In order to encapsulate the complex data processing required for proteogenomics, and provide a simple interface to deploy a range of algorithms developed for data analysis, we have developed PANOPLY—a cloud-based p latform for a utomated a n d repr o ducible p roteogenomic data ana ly sis. A wide array of algorithms have been implemented, and we highlight the application of PANOPLY to the analysis of cancer proteogenomic data.
2

TAILS identifies candidate substrates and biomarkers of ADAMTS7, a therapeutic protease target in coronary artery disease

Bryan MacDonald et al.Oct 24, 2023
+13
C
H
B
Loss-of-function mutations in the secreted enzyme ADAMTS7 (a disintegrin and metalloproteinase with thrombospondin motifs 7) are associated with protection for coronary artery disease (CAD). ADAMTS7 catalytic inhibition has been proposed as a therapeutic strategy for treating CAD; however, the lack of an endogenous substrate has hindered the development of activity-based biomarkers. To identify ADAMTS7 extracellular substrates and their cleavage sites relevant to vascular disease, we used TAILS (terminal amine isotopic labeling of substrates), a method for identifying protease-generated neo-N termini. We compared the secreted proteome of vascular smooth muscle and endothelial cells expressing either full-length mouse ADAMTS7 WT, catalytic mutant ADAMTS7 E373Q or a control luciferase adenovirus. Significantly enriched N-terminal cleavage sites in ADAMTS7 WT samples were compared to the negative control conditions and filtered for stringency, resulting in catalogs of high confidence candidate ADAMTS7 cleavage sites from our three independent TAILS experiments. Within the overlap of these discovery sets, we identified 24 unique cleavage sites from 16 protein substrates, including cleavage sites in EFEMP1 (EGF-containing fibulin-like extracellular matrix protein 1/Fibulin-3). The ADAMTS7 TAILS preference for EMEMP1 cleavage at the amino acids 123.124 over the adjacent 124.125 site was validated using both endogenous EFEMP1 and purified EFEMP1 in a binary in vitro cleavage assay. Collectively our TAILS discovery experiments have uncovered hundreds of potential substrates and cleavage sites to explore disease related biological substrates and facilitate activity-based ADAMTS7 biomarker development.
10

Sensitive, high-throughput HLA-I and HLA-II immunopeptidomics using parallel accumulation-serial fragmentation mass spectrometry

Kshiti Phulphagar et al.Oct 24, 2023
+7
A
C
K
Comprehensive, in-depth identification of the human leukocyte antigen HLA-I and HLA-II tumor immunopeptidome can inform the development of cancer immunotherapies. Mass spectrometry (MS) is powerful technology for direct identification of HLA peptides from patient derived tumor samples or cell lines. However, achieving sufficient coverage to detect rare, clinically relevant antigens requires highly sensitive MS-based acquisition methods and large amounts of sample. While immunopeptidome depth can be increased by off-line fractionation prior to MS, its use is impractical when analyzing limited amounts of primary tissue biopsies. To address this challenge, we developed and applied a high throughput, sensitive, single-shot MS-based immunopeptidomics workflow that leverages trapped ion mobility time-of-flight mass spectrometry on the Bruker timsTOF SCP. We demonstrate >2-fold improved coverage of HLA immunopeptidomes relative to prior methods with up to 15,000 distinct HLA-I and HLA-II peptides from 4e7 cells. Our optimized single-shot MS acquisition method on the timsTOF SCP maintains high coverage, eliminates the need for off-line fractionation and reduces input requirements to as few as 1e6 A375 cells for > 800 distinct HLA-I peptides. This depth is sufficient to identify HLA-I peptides derived from cancer-testis antigen, and novel/unannotated open reading frames. We also apply our optimized single-shot SCP acquisition methods to tumor derived samples, enabling sensitive, high throughput and reproducible immunopeptidome profiling with detection of clinically relevant peptides from less than 4e7 cells or 15 mg wet weight tissue.
0

Non-canonical open reading frames encode functional proteins essential for cancer cell survival

John Prensner et al.May 7, 2020
+23
V
O
J
A key question in genome research is whether biologically active proteins are restricted to the ~20,000 canonical, well-annotated genes, or rather extend to the many non-canonical open reading frames (ORFs) predicted by genomic analyses. To address this, we experimentally interrogated 553 ORFs nominated in ribosome profiling datasets. Of these 553 ORFs, 57 (10%) induced a viability defect when the endogenous ORF was knocked out using CRISPR/Cas9 in 8 human cancer cell lines, 257 (46%) showed evidence of protein translation when ectopically expressed in HEK293T cells, and 401 (73%) induced gene expression changes measured by transcriptional profiling following ectopic expression across 4 cell types. CRISPR tiling and start codon mutagenesis indicated that the biological effects of these non-canonical ORFs required their translation as opposed to RNA-mediated effects. We selected one of these ORFs, G029442--renamed GREP1 (Glycine-Rich Extracellular Protein-1)--for further characterization. We found that GREP1 encodes a secreted protein highly expressed in breast cancer, and its knock-out in 263 cancer cell lines showed preferential essentiality in breast cancer derived lines. Analysis of the secretome of GREP1-expressing cells showed increased abundance of the oncogenic cytokine GDF15, and GDF15 supplementation mitigated the growth inhibitory effect of GREP1 knock-out. Taken together, these experiments suggest that the non-canonical ORFeome is surprisingly rich in biologically active proteins and potential cancer therapeutic targets deserving of further study.