IL
Inês Laranjeira
Author with expertise in Oxytocin and Social Behavior Regulation
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
27
h-index:
5
/
i10-index:
3
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Standardized and reproducible measurement of decision-making in mice

Valeria Aguillon-Rodriguez et al.Jan 17, 2020
Progress in science requires standardized assays whose results can be readily shared, compared, and reproduced across laboratories. Reproducibility, however, has been a concern in neuroscience, particularly for measurements of mouse behavior. Here we show that a standardized task to probe decision-making in mice produces reproducible results across multiple laboratories. We designed a task for head-fixed mice that combines established assays of perceptual and value-based decision making, and we standardized training protocol and experimental hardware, software, and procedures. We trained 140 mice across seven laboratories in three countries, and we collected 5 million mouse choices into a publicly available database. Learning speed was variable across mice and laboratories, but once training was complete there were no significant differences in behavior across laboratories. Mice in different laboratories adopted similar reliance on visual stimuli, on past successes and failures, and on estimates of stimulus prior probability to guide their choices. These results reveal that a complex mouse behavior can be successfully reproduced across multiple laboratories. They establish a standard for reproducible rodent behavior, and provide an unprecedented dataset and open-access tools to study decision-making in mice. More generally, they indicate a path towards achieving reproducibility in neuroscience through collaborative open-science approaches.
0

Citric Acid Water as an Alternative to Water Restriction for High-Yield Mouse Behavior

Anne Urai et al.Mar 2, 2020
A bstract Powerful neural measurement and perturbation tools have positioned mice as an ideal species for probing the neural circuit mechanisms of cognition. Crucial to this success is the ability to motivate animals to perform specific behaviors. One successful strategy is to restrict their water intake, rewarding them with water during a behavioral task. However, water restriction requires rigorous monitoring of animals’ health and hydration status and can be challenging for some mice. We present an alternative that allows mice more control over their water intake: free home-cage access to water, made slightly sour by a small amount of citric acid (CA). In a previous study, rats with free access to CA water readily performed a behavioral task for water rewards, although completing fewer trials than under water restriction (Reinagel, 2018). We here extend this approach to mice and confirm its robustness across multiple laboratories. Mice reduced their intake of CA water while maintaining healthy weights. Continuous home-cage access to CA water only subtly impacted their willingness to perform a decision-making task, in which they were rewarded with sweetened water. When free CA water was used instead of water restriction only on weekends, learning and decision-making behavior were unaffected. CA water is thus a promising alternative to water restriction, allowing animals more control over their water intake without interfering with behavioral performance. S ignificance S tatement High-throughput, reliable behavioral training is a key requirement for the use of mice in behavioral and systems neuroscience, but depends crucially on ability to motivate animals to perform specific behaviors. Here, we present an alternative method to commonly used methods of water restriction: free home-cage access to water, made slightly sour by a small amount of citric acid. This non-labor-intensive, low-error option benefits animal health without hindering behavioral training progress. Citric acid water can serve as a reliable and standardized strategy to achieve high quality task behavior, further facilitating the use of mice in high-throughput behavioral studies.
0

Dissecting the Complexities of Learning With Infinite Hidden Markov Models

Sebastian Bruijns et al.Dec 23, 2023
Abstract Learning to exploit the contingencies of a complex experiment is not an easy task for animals. Individuals learn in an idiosyncratic manner, revising their approaches multiple times as they are shaped, or shape themselves, and potentially end up with different strategies. Their long-run learning curves are therefore a tantalizing target for the sort of individualized quantitative characterizations that sophisticated modelling can provide. However, any such model requires a flexible and extensible structure which can capture radically new behaviours as well as slow changes in existing ones. To this end, we suggest a dynamic input-output infinite hidden semi-Markov model, whose latent states are associated with specific components of behaviour. This model includes an infinite number of potential states and so has the capacity to describe substantially new behaviours by unearthing extra states; while dynamics in the model allow it to capture more modest adaptations to existing behaviours. We individually fit the model to data collected from more than 100 mice as they learned a contrast detection task over tens of sessions and around fifteen thousand trials each. Despite large individual differences, we found that most animals progressed through three major stages of learning, the transitions between which were marked by distinct additions to task understanding. We furthermore showed that marked changes in behaviour are much more likely to occur at the very beginning of sessions, i.e. after a period of rest, and that response biases in earlier stages are not predictive of biases later on in this task.