XJ
Xin Jin
Author with expertise in Comprehensive Integration of Single-Cell Transcriptomic Data
Jiangxi Provincial People's Hospital, First Affiliated Hospital of Jiangxi Medical College, Yanbian University
+ 7 more
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
10
(70% Open Access)
Cited by:
377
h-index:
27
/
i10-index:
36
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
207

A multimodal cell census and atlas of the mammalian primary motor cortex

Ricky Adkins et al.Oct 13, 2023
+254
S
A
R
ABSTRACT We report the generation of a multimodal cell census and atlas of the mammalian primary motor cortex (MOp or M1) as the initial product of the BRAIN Initiative Cell Census Network (BICCN). This was achieved by coordinated large-scale analyses of single-cell transcriptomes, chromatin accessibility, DNA methylomes, spatially resolved single-cell transcriptomes, morphological and electrophysiological properties, and cellular resolution input-output mapping, integrated through cross-modal computational analysis. Together, our results advance the collective knowledge and understanding of brain cell type organization: First, our study reveals a unified molecular genetic landscape of cortical cell types that congruently integrates their transcriptome, open chromatin and DNA methylation maps. Second, cross-species analysis achieves a unified taxonomy of transcriptomic types and their hierarchical organization that are conserved from mouse to marmoset and human. Third, cross-modal analysis provides compelling evidence for the epigenomic, transcriptomic, and gene regulatory basis of neuronal phenotypes such as their physiological and anatomical properties, demonstrating the biological validity and genomic underpinning of neuron types and subtypes. Fourth, in situ single-cell transcriptomics provides a spatially-resolved cell type atlas of the motor cortex. Fifth, integrated transcriptomic, epigenomic and anatomical analyses reveal the correspondence between neural circuits and transcriptomic cell types. We further present an extensive genetic toolset for targeting and fate mapping glutamatergic projection neuron types toward linking their developmental trajectory to their circuit function. Together, our results establish a unified and mechanistic framework of neuronal cell type organization that integrates multi-layered molecular genetic and spatial information with multi-faceted phenotypic properties.
207
Citation18
0
Save
0

Brain-wide correspondence of neuronal epigenomics and distant projections

Jingtian Zhou et al.Mar 6, 2024
+48
M
Z
J
Abstract Single-cell analyses parse the brain’s billions of neurons into thousands of ‘cell-type’ clusters residing in different brain structures 1 . Many cell types mediate their functions through targeted long-distance projections allowing interactions between specific cell types. Here we used epi-retro-seq 2 to link single-cell epigenomes and cell types to long-distance projections for 33,034 neurons dissected from 32 different regions projecting to 24 different targets (225 source-to-target combinations) across the whole mouse brain. We highlight uses of these data for interrogating principles relating projection types to transcriptomics and epigenomics, and for addressing hypotheses about cell types and connections related to genetics. We provide an overall synthesis with 926 statistical comparisons of discriminability of neurons projecting to each target for every source. We integrate this dataset into the larger BRAIN Initiative Cell Census Network atlas, composed of millions of neurons, to link projection cell types to consensus clusters. Integration with spatial transcriptomics further assigns projection-enriched clusters to smaller source regions than the original dissections. We exemplify this by presenting in-depth analyses of projection neurons from the hypothalamus, thalamus, hindbrain, amygdala and midbrain to provide insights into properties of those cell types, including differentially expressed genes, their associated cis -regulatory elements and transcription-factor-binding motifs, and neurotransmitter use.
0
Citation8
-1
Save
1

Characterization of striatal dopamine projections across striatal subregions in behavioral flexibility

R. Merwe et al.Oct 24, 2023
+11
D
J
R
Abstract Behavioral flexibility is key to survival in a dynamic environment. While flexible, goal-directed behaviors are initially dependent on dorsomedial striatum, they become dependent on lateral striatum with extended training as behaviors become inflexible. Similarly, dopamine release shifts from ventromedial to lateral striatum across learning, and impairment of lateral dopamine release disrupts habitual, inflexible responding. This raises the possibility that lateral dopamine release is a causative mechanism in establishing inflexible behaviors late in training, though this has not been directly tested. Here, we utilized optogenetics to activate dopamine terminals in dorsal medial (DMS), dorsal lateral (DLS), and ventral (NAc) striatum in DATcre mice to determine how specific dopamine subpopulations impact behavioral flexibility. Mice performed a reversal task in which they self-stimulated DMS, DLS, or NAc dopamine terminals by pressing one of two levers before action-outcome lever contingencies were reversed. Consistent with presumed ventromedial/lateral striatal function, we found that mice self-stimulating ventromedial dopamine terminals rapidly reversed lever preference following contingency reversal, while mice self-stimulating dopamine terminals in DLS showed impaired reversal learning. These impairments were characterized by more regressive errors and reliance on lose-stay strategies following reversal, suggesting reward insensitivity and overreliance on previously learned actions. This study supports a model of striatal function in which dorsomedial dopamine facilitates goal-directed responding, and dorsolateral dopamine release is a key mechanism in supporting the transition toward inflexible behaviors.
1
Citation2
0
Save
2

Asymmetric cortical projections to striatal direct and indirect pathways distinctly control actions

Jason Klug et al.Oct 3, 2023
+4
H
X
J
The striatal direct and indirect pathways constitute the core for basal ganglia function in action control. Although both striatal D1- and D2-spiny projection neurons (SPNs) receive excitatory inputs from the cerebral cortex, whether or not they share inputs from the same cortical neurons, and how pathway-specific corticostriatal projections control behavior remain largely unknown. Here using a new G-deleted rabies system in mice, we found that more than two-thirds of excitatory inputs to D2-SPNs also target D1-SPNs, while only one-third do so vice versa. Optogenetic stimulation of striatal D1- vs. D2-SPN-projecting cortical neurons differently regulate locomotion, reinforcement learning and sequence behavior, implying the functional dichotomy of pathway-specific corticostriatal subcircuits. These results reveal the partially segregated yet asymmetrically overlapping cortical projections on striatal D1- vs. D2-SPNs, and that the pathway-specific corticostriatal subcircuits distinctly control behavior. It has important implications in a wide range of neurological and psychiatric diseases affecting cortico-basal ganglia circuitry.
1

Brain-wide Correspondence Between Neuronal Epigenomics and Long-Distance Projections

Jingtian Zhou et al.Oct 24, 2023
+45
M
Z
J
Abstract Single-cell genetic and epigenetic analyses parse the brain’s billions of neurons into thousands of “cell-type” clusters, each residing in different brain structures. Many of these cell types mediate their unique functions by virtue of targeted long-distance axonal projections to allow interactions between specific cell types. Here we have used Epi-Retro-Seq to link single cell epigenomes and associated cell types to their long-distance projections for 33,034 neurons dissected from 32 different source regions projecting to 24 different targets (225 source →target combinations) across the whole mouse brain. We highlight uses of this large data set for interrogating both overarching principles relating projection cell types to their transcriptomic and epigenomic properties and for addressing and developing specific hypotheses about cell types and connections as they relate to genetics. We provide an overall synthesis of the data set with 926 statistical comparisons of the discriminability of neurons projecting to each target for every dissected source region. We integrate this dataset into the larger, annotated BICCN cell type atlas composed of millions of neurons to link projection cell types to consensus clusters. Integration with spatial transcriptomic data further assigns projection-enriched clusters to much smaller source regions than afforded by the original dissections. We exemplify these capabilities by presenting in-depth analyses of neurons with identified projections from the hypothalamus, thalamus, hindbrain, amygdala, and midbrain to provide new insights into the properties of those cell types, including differentially expressed genes, their associated cis-regulatory elements and transcription factor binding motifs, and neurotransmitter usage.
4

Dynamic encoding of saccade sequences in primate frontal eye field

Jing Jia et al.Oct 24, 2023
+2
Q
Z
J
A bstract Frontal eye field (FEF) is a key part of oculomotor system, with dominant responses to the direction of single saccades. However, whether and how FEF contributes to sequential saccades remain largely unknown. Here by training rhesus monkeys to perform sequential saccades and recording the neuronal activities in FEF, we found that the sequence-related activities are clearly represented in FEF, and many neurons’ selectivity to saccade direction undergoes dynamic changes during sequential task. In addition, the sequence-related activities are context-dependent, with different firing activities during memory- versus visually-guided sequence. Supra-threshold microstimulation in FEF evokes saccade without altering the overall sequence structure. Pharmacological inactivation of FEF severely impaired the monkey’s performance of sequential saccades, with different effects on the same actions at different positions within the sequence. These results reveal the context-dependent dynamic encoding of saccade direction in FEF, and underscore a critical role of FEF in planning and execution of sequential saccades. I n B rief Jia, Puyang et al. employed in vivo recording to reveal the dynamic encoding of sequential saccades in primate frontal eye field (FEF), then used electric microstimulation and reversible inactivation to demonstrate the causal role of FEF in controlling saccade sequences. H ighlights FEF neurons respond differently during sequential vs. single saccades Sequence-related FEF activity is context-dependent FEF microstimulation induced saccade without altering sequence structure FEF inactivation severely impaired the performance of sequential saccades
1

Multiple dynamic interactions from basal ganglia direct and indirect pathways mediate action selection

Hao Li et al.Oct 24, 2023
X
H
The basal ganglia are known to be essential for action selection. However, the functional role of basal ganglia direct and indirect pathways in action selection remains unresolved. Here by employing cell-type-specific neuronal recording and manipulation in mice trained in a choice task, we demonstrate that multiple dynamic interactions from the direct and indirect pathways control the action selection. While the direct pathway regulates the behavioral choice in a linear manner, the indirect pathway exerts a nonlinear inverted-U-shaped control over action selection, depending on the inputs and the network state. We propose a new center (direct) - surround (indirect) - context (indirect) "Triple-control" functional model of basal ganglia, which can replicate the physiological and behavioral experimental observations that cannot be simply explained by either the traditional "Go/No-go" or more recent "Co-activation" model. These findings have important implications on understanding the basal ganglia circuitry and action selection in health and disease.
0

Epigenomic Diversity of Cortical Projection Neurons in the Mouse Brain

Zhuzhu Zhang et al.May 7, 2020
+28
P
J
Z
Neuronal cell types are classically defined by their molecular properties, anatomy, and functions. While recent advances in single-cell genomics have led to high-resolution molecular characterization of cell type diversity in the brain, neuronal cell types are often studied out of the context of their anatomical properties. To better understand the relationship between molecular and anatomical features defining cortical neurons, we combined retrograde labeling with single-nucleus DNA methylation sequencing to link epigenomic properties of cell types to neuronal projections. We examined 11,827 single neocortical neurons from 63 cortico-cortical (CC) and cortico-subcortical long-distance projections. Our results revealed unique epigenetic signatures of projection neurons that correspond to their laminar and regional location and projection patterns. Based on their epigenomes, intra-telencephalic (IT) cells projecting to different cortical targets could be further distinguished, and some layer 5 neurons projecting to extra-telencephalic targets (L5-ET) formed separate subclusters that aligned with their axonal projections. Such separation varied between cortical areas, suggesting area-specific differences in L5-ET subtypes, which were further validated by anatomical studies. Interestingly, a population of CC projection neurons clustered with L5-ET rather than IT neurons, suggesting a population of L5-ET cortical neurons projecting to both targets (L5-ET+CC). We verified the existence of these neurons by labeling the axon terminals of CC projection neurons and observed clear labeling in ET targets including thalamus, superior colliculus, and pons. These findings highlight the power of single-cell epigenomic approaches to connect the molecular properties of neurons with their anatomical and projection properties.
23

Nigrostriatal Dopamine Signals Sequence-Specific Action-Outcome Prediction Errors

Nick Hollon et al.Oct 24, 2023
+3
C
E
N
ABSTRACT Dopamine has been suggested to encode cue-reward prediction errors during Pavlovian conditioning. While this theory has been widely applied to reinforcement learning concerning instrumental actions, whether dopamine represents action-outcome prediction errors and how it controls sequential behavior remain largely unknown. Here, by training mice to perform optogenetic intracranial self-stimulation, we examined how self-initiated goal-directed behavior influences nigrostriatal dopamine transmission during single as well as sequential instrumental actions. We found that dopamine release evoked by direct optogenetic stimulation was dramatically reduced when delivered as the consequence of the animal’s own action, relative to non-contingent passive stimulation. This action-induced dopamine suppression was specific to the reinforced action, temporally restricted to counteract the expected outcome, and exhibited sequence-selectivity consistent with hierarchical control of sequential behavior. Together these findings demonstrate that nigrostriatal dopamine signals sequence-specific prediction errors in action-outcome associations, with fundamental implications for reinforcement learning and instrumental behavior in health and disease.