BV
Bastian Vögeli
Author with expertise in Metabolic Engineering and Synthetic Biology
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
7
(86% Open Access)
Cited by:
93
h-index:
16
/
i10-index:
23
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
2

Multivalent designed proteins neutralize SARS-CoV-2 variants of concern and confer protection against infection in mice

Andrew Hunt et al.May 25, 2022
New variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continue to arise and prolong the coronavirus disease 2019 (COVID-19) pandemic. Here, we used a cell-free expression workflow to rapidly screen and optimize constructs containing multiple computationally designed miniprotein inhibitors of SARS-CoV-2. We found the broadest efficacy was achieved with a homotrimeric version of the 75-residue angiotensin-converting enzyme 2 (ACE2) mimic AHB2 (TRI2-2) designed to geometrically match the trimeric spike architecture. Consistent with the design model, in the cryo-electron microscopy structure TRI2-2 forms a tripod at the apex of the spike protein that engaged all three receptor binding domains simultaneously. TRI2-2 neutralized Omicron (B.1.1.529), Delta (B.1.617.2), and all other variants tested with greater potency than the monoclonal antibodies used clinically for the treatment of COVID-19. TRI2-2 also conferred prophylactic and therapeutic protection against SARS-CoV-2 challenge when administered intranasally in mice. Designed miniprotein receptor mimics geometrically arrayed to match pathogen receptor binding sites could be a widely applicable antiviral therapeutic strategy with advantages over antibodies in greater resistance to viral escape and antigenic drift, and advantages over native receptor traps in lower chances of autoimmune responses.
2
Citation74
1
Save
51

Awakening a latent carbon fixation cycle inEscherichia coli

Ari Satanowski et al.May 19, 2020
Abstract Carbon fixation is one of the most important biochemical processes. Most natural carbon fixation pathways are thought to have emerged from enzymes that originally performed other metabolic tasks. Can we recreate the emergence of a carbon fixation pathway in a heterotrophic host by recruiting only endogenous enzymes? In this study, we address this question by systematically analyzing possible carbon fixation pathways composed only of Escherichia coli native enzymes. We identify the GED ( G nd- E ntner- D oudoroff) cycle as the simplest pathway that can operate with high thermodynamic driving force. This autocatalytic route is based on reductive carboxylation of ribulose 5-phosphate (Ru5P) by 6-phosphogluconate dehydrogenase (Gnd), followed by reactions of the Entner-Doudoroff pathway, gluconeogenesis, and the pentose phosphate pathway. We demonstrate the in vivo feasibility of this new-to-nature pathway by constructing E. coli gene deletion strains whose growth on pentose sugars depends on the GED shunt, a linear variant of the GED cycle which does not require the regeneration of Ru5P. Several metabolic adaptations, most importantly the increased production of NADPH, assist in establishing sufficiently high flux to sustain this growth. Our study exemplifies a trajectory for the emergence of carbon fixation in a heterotrophic organism and demonstrates a synthetic pathway of biotechnological interest.
51
Citation3
0
Save
25

Modular cell-free expression plasmids to accelerate biological design in cells

Ashty Karim et al.Jul 22, 2020
Abstract Industrial biotechnology aims to produce high-value products from renewable resources. This can be challenging because model microorganisms—organisms that are easy to use like Escherichia coli —often lack the machinery required to utilize desired feedstocks like lignocellulosic biomass or syngas. Non-model organisms, such as Clostridium , are industrially proven and have the desired metabolic features but have several hurdles to mainstream use. Namely, these species grow more slowly than conventional laboratory microbes and genetic tools for engineering them are far less prevalent. To address these hurdles for accelerating cellular design, cell-free synthetic biology has emerged as an approach for characterizing non-model organisms and rapidly testing metabolic pathways in vitro . Unfortunately, cell-free systems can require specialized DNA architectures with minimal regulation that are not compatible with cellular expression. In this work, we develop a modular vector system that allows for T7 expression of desired enzymes for cell-free expression and direct Golden Gate assembly into Clostridium expression vectors. Utilizing the Joint Genome Institute’s DNA Synthesis Community Science Program, we designed and synthesized these plasmids and genes required for our projects allowing us to shuttle DNA easily between our in vitro and in vivo experiments. We next validated that these vectors were sufficient for cell-free expression of enzymes, performing on par with the previous state-of-the-art. Lastly, we demonstrated automated six-part DNA assemblies for C. autoethanogenum expression with efficiencies ranging from 68-90%. We anticipate this system of plasmids will enable a framework for facile testing of biosynthetic pathways in vitro and in vivo by shortening development cycles.
0

Coupled inter-subunit dynamics enable the fastest CO2-fixation by reductive carboxylases

Hasan DeMi̇rci̇ et al.Apr 12, 2019
Enoyl-CoA carboxylases/reductases (ECRs) are the most efficient CO2-fixing enzymes described to date, outcompeting RubisCO, the key enzyme in photosynthesis in catalytic activity by more than an order of magnitude. However, the molecular mechanisms underlying ECR's extraordinary catalytic activity remain elusive. Here we used different crystallographic approaches, including ambient temperature X-ray Free Electron Laser (XFEL) experiments, to study the dynamic structural organization of the ECR from Kitasatospora setae. K. setae ECR is a homotetramer that differentiates into a dimer of dimers of open- and closed-form subunits in the catalytically active state, suggesting that the enzyme operates with "half-site reactivity" to achieve high catalytic rates. Using structure-based mutagenesis, we show that catalysis is synchronized in K. setae ECR across the pair of dimers by conformational coupling of catalytic domains and within individual dimers by shared substrate binding sites. Our results provide unprecedented insights into the dynamic organization and synchronized inter- and intra-subunit communications of nature's most efficient CO2-fixing enzyme during catalysis.