SK
Senthilkumar Karuppagounder
Author with expertise in Pathophysiology of Parkinson's Disease
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
9
(78% Open Access)
Cited by:
2,723
h-index:
38
/
i10-index:
58
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Transneuronal Propagation of Pathologic α-Synuclein from the Gut to the Brain Models Parkinson’s Disease

Sangjune Kim et al.Jun 26, 2019
+16
T
S
S
Analysis of human pathology led Braak to postulate that α-synuclein (α-syn) pathology could spread from the gut to brain via the vagus nerve. Here, we test this postulate by assessing α-synucleinopathy in the brain in a novel gut-to-brain α-syn transmission mouse model, where pathological α-syn preformed fibrils were injected into the duodenal and pyloric muscularis layer. Spread of pathologic α-syn in brain, as assessed by phosphorylation of serine 129 of α-syn, was observed first in the dorsal motor nucleus, then in caudal portions of the hindbrain, including the locus coeruleus, and much later in basolateral amygdala, dorsal raphe nucleus, and the substantia nigra pars compacta. Moreover, loss of dopaminergic neurons and motor and non-motor symptoms were observed in a similar temporal manner. Truncal vagotomy and α-syn deficiency prevented the gut-to-brain spread of α-synucleinopathy and associated neurodegeneration and behavioral deficits. This study supports the Braak hypothesis in the etiology of idiopathic Parkinson's disease (PD).
0
Citation924
0
Save
0

Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson’s disease

Seung Yun et al.Jun 8, 2018
+30
S
S
S
Activation of microglia by classical inflammatory mediators can convert astrocytes into a neurotoxic A1 phenotype in a variety of neurological diseases1,2. Development of agents that could inhibit the formation of A1 reactive astrocytes could be used to treat these diseases for which there are no disease-modifying therapies. Glucagon-like peptide-1 receptor (GLP1R) agonists have been indicated as potential neuroprotective agents for neurologic disorders such as Alzheimer's disease and Parkinson's disease3-13. The mechanisms by which GLP1R agonists are neuroprotective are not known. Here we show that a potent, brain-penetrant long-acting GLP1R agonist, NLY01, protects against the loss of dopaminergic neurons and behavioral deficits in the α-synuclein preformed fibril (α-syn PFF) mouse model of sporadic Parkinson's disease14,15. NLY01 also prolongs the life and reduces the behavioral deficits and neuropathological abnormalities in the human A53T α-synuclein (hA53T) transgenic mouse model of α-synucleinopathy-induced neurodegeneration16. We found that NLY01 is a potent GLP1R agonist with favorable properties that is neuroprotective through the direct prevention of microglial-mediated conversion of astrocytes to an A1 neurotoxic phenotype. In light of its favorable properties, NLY01 should be evaluated in the treatment of Parkinson's disease and related neurologic disorders characterized by microglial activation.
0

Pathological α-synuclein transmission initiated by binding lymphocyte-activation gene 3

Xiaobo Mao et al.Sep 29, 2016
+29
S
M
X
INTRODUCTION Parkinson’s disease (PD) is the second most common neurodegenerative disorder and leads to slowness of movement, tremor, rigidity, and, in the later stages of PD, cognitive impairment. Pathologically, PD is characterized by the accumulation of α-synuclein in Lewy bodies and neurites. There is degeneration of neurons throughout the nervous system, with the degeneration of dopamine neurons in the substantia nigra pars compacta leading to the major symptoms of PD. RATIONALE In the brains of PD patients, pathologic α-synuclein seems to spread from cell to cell via self-amplification, propagation, and transmission in a stereotypical and topographical pattern among neighboring cells and/or anatomically connected brain regions. The spread or transmission of pathologic α-synuclein is emerging as a potentially important driver of PD pathogenesis. The underlying mechanisms and molecular entities responsible for the transmission of pathologic α-synuclein from cell to cell are not known, but the entry of pathologic α-synuclein into neurons is thought to occur, in part, through an active clathrin-dependent endocytic process. RESULTS Using recombinant α-synuclein preformed fibrils (PFF) as a model system with which to study the transmission of misfolded α-synuclein from neuron to neuron, we screened a library encoding transmembrane proteins for α-synuclein-biotin PFF–binding candidates via detection with streptavidin-AP (alkaline phosphatase) staining. Three positive clones were identified that bind α-synuclein PFF and include lymphocyte-activation gene 3 (LAG3), neurexin 1β, and amyloid β precursor-like protein 1 (APLP1). Of these three transmembrane proteins, LAG3 demonstrated the highest ratio of selectivity for α-synuclein PFF over the α-synuclein monomer. α-Synuclein PFF bind to LAG3 in a saturable manner (dissociation constant = 77 nM), whereas the α-synuclein monomer does not bind to LAG3. Co-immunoprecipitation also suggests that pathological α-synuclein PFF specifically bind to LAG3. Tau PFF, β-amyloid oligomer, and β-amyloid PFF do not bind to LAG3, indicating that LAG3 is specific for α-synuclein PFF. The internalization of α-synuclein PFF involves LAG3 because deletion of LAG3 reduces the endocytosis of α-synuclein PFF. LAG3 colocalizes with the endosomal guanosine triphosphatases Rab5 and Rab7 and coendocytoses with pathologic α-synuclein. Neuron-to-neuron transmission of pathologic α-synuclein and the accompanying pathology and neurotoxicity is substantially attenuated by deletion of LAG3 or by antibodies to LAG3. The lack of LAG3 also substantially delayed α-synuclein PFF–induced loss of dopamine neurons, as well as biochemical and behavioral deficits in vivo. CONCLUSION We discovered that pathologic α-synuclein transmission and toxicity is initiated by binding to LAG3 and that neuron-to-neuron transmission of pathological α-synuclein involves the endocytosis of exogenous α-synuclein PFF by the engagement of LAG3 on neurons. Depletion of LAG3 or antibodies to LAG3 substantially reduces the pathology set in motion by the transmission of pathologic α-synuclein. The identification of LAG3 as an α-synuclein PFF–binding protein provides a new target for developing therapeutics designed to slow the progression of PD and related α-synucleinopathies. LAG3 deletion or antibodies to LAG3 delay α-synuclein PFF transmission. Compared with wild-type neurons, binding and endocytosis of α-synuclein PFF is dramatically reduced with antibodies to LAG3 or when LAG3 is deleted, resulting in delayed pathologic α-synuclein transmission and toxicity. Illustration credit: I-Hsun Wu
0

Poly(ADP-ribose) drives pathologic α-synuclein neurodegeneration in Parkinson’s disease

Tae‐In Kam et al.Nov 1, 2018
+19
H
X
T
PAR promotes α-synuclein toxicity How pathologic α-synuclein (α-syn) leads to neurodegeneration in Parkinson's disease (PD) remains poorly understood. Kam et al. studied the α-syn preformed fibril (α-syn PFF) model of sporadic PD (see the Perspective by Brundin and Wyse). They found that pathologic α-syn–activated poly(adenosine 5′-diphosphate–ribose) (PAR) polymerase–1 (PARP-1) and inhibition of PARP or knockout of PARP-1 protected mice from pathology. The generation of PAR by α-syn PFF–induced PARP-1 activation converted α-syn PFF to a strain that was 25-fold more toxic, termed PAR–α-syn PFF. An increase of PAR in the cerebrospinal fluid and evidence of PARP activation in the substantia nigra of PD patients indicates that PARP activation contributes to the pathogenesis of PD through parthanatos and conversion of α-syn to a more toxic strain. Science , this issue p. eaat8407 ; see also p. 521
6

PARIS farnesylation prevents neurodegeneration in models of Parkinson’s disease

Areum Jo et al.Jul 28, 2021
+31
T
Y
A
Farnesol enhances the amounts of farnesylated PARIS and PGC-1α, preventing dopaminergic neuronal loss in Parkinson’s disease models.
6
Citation35
3
Save
7

Aplp1 and the Aplp1-Lag3 Complex facilitates transmission of pathologic α-synuclein

Xiaobo Mao et al.May 1, 2021
+32
D
H
X
Abstract Pathologic α-synuclein (α-syn) spreads from cell-to-cell, in part, through binding to the lymphocyte-activation gene 3 (Lag3). Here we report that amyloid β precursor-like protein 1 (Aplp1) forms a complex with Lag3 that facilitates the binding, internalization, transmission, and toxicity of pathologic α-syn. Deletion of both Aplp1 and Lag3 eliminates the loss of dopaminergic neurons and the accompanying behavioral deficits induced by α-syn preformed fibrils (PFF). Anti-Lag3 prevents the internalization of α-syn PFF by disrupting the interaction of Aplp1 and Lag3, and blocks the neurodegeneration induced by α-syn PFF in vivo . The identification of Aplp1 and the interplay with Lag3 for α-syn PFF induced pathology advances our understanding of the molecular mechanism of cell-to-cell transmission of pathologic α-syn and provides additional targets for therapeutic strategies aimed at preventing neurodegeneration in Parkinson’s disease and related α-synucleinopathies. One Sentence Summary Aplp1 forms a complex with Lag3 that facilitates the binding, internalization, transmission, and toxicity of pathologic α-synuclein. Graphical Abstract Aplp1 and the Aplp1-Lag3 complex facilitates transmission of pathologic α-synuclein. Aplp1 is a receptor that drives pathologic α-syn transmission, and genetic depletion of Aplp1 can significantly reduce the α-synuclein pathogenesis. Aplp1 and Lag3 forms an Aplp1-Lag3 complex that accounts for substantial binding of pathologic α-syn to cortical neurons. Together Aplp1 and Lag3 play a major role in pathologic α-syn internalization, transmission and toxicity. Double knockout of Aplp1 and Lag3 and or a Lag3 antibody that disrupts the Aplp1 and Lag3 complex almost completely blocks α-syn PFF-induced neurodegeneration.
7
Citation14
0
Save
0

Aplp1 interacts with Lag3 to facilitate transmission of pathologic α-synuclein

Xiaobo Mao et al.May 31, 2024
+39
D
H
X
Abstract Pathologic α-synuclein (α-syn) spreads from cell-to-cell, in part, through binding to the lymphocyte-activation gene 3 (Lag3). Here we report that amyloid β precursor-like protein 1 (Aplp1) interacts with Lag3 that facilitates the binding, internalization, transmission, and toxicity of pathologic α-syn. Deletion of both Aplp1 and Lag3 eliminates the loss of dopaminergic neurons and the accompanying behavioral deficits induced by α-syn preformed fibrils (PFF). Anti-Lag3 prevents the internalization of α-syn PFF by disrupting the interaction of Aplp1 and Lag3, and blocks the neurodegeneration induced by α-syn PFF in vivo. The identification of Aplp1 and the interplay with Lag3 for α-syn PFF induced pathology deepens our insight about molecular mechanisms of cell-to-cell transmission of pathologic α-syn and provides additional targets for therapeutic strategies aimed at preventing neurodegeneration in Parkinson’s disease and related α-synucleinopathies.
0
Citation1
0
Save
0

Synchronization of Ovulation and Fixed Time Breeding in Tellicherry Goats

Senthilkumar Karuppagounder et al.Jul 22, 2024
M
M
S
Background: Reproductive management of goats on large scale becomes difficult due to contributing reasons like poor estrus expression, lack of heat detection techniques, etc. Synchronization of ovulation has significantly improved the conception in cows. However, such investigations are lacking in goats. Hence, an experiment was conducted to compare the efficacy of different ovulation synchronization protocols on kidding and fecundity rates in Tellicherry goats during winter and summer seasons. Methods: The study was conducted in 240 does of 60 days postpartum period in two different seasons and investigated the efficacy of different protocols, The efficacy of intravaginal sponge (group I), Ovsynch (group II), Ovsynch with sponge (group III), Co synch (group IV), Co synch with sponge (group V) and control (group VI) on kidding and fecundity rate following fixed time breeding (NS/AI) was investigated in Tellicherry goats. Result: The overall kidding rate recorded during winter season in natural service (NS) was 80.00 and Artificial Insemination (AI) it was 70.00 per cent and in summer season it was 60.00 and 55.00 per cent, respectively. During winter season the fecundity rates observed were 1.70, 1.60, 1.75, 1.60, 1.60 and 1.40 in group I, II, III, IV, V and VI, respectively. The corresponding values during summer season were 1.55, 1.40, 1.60, 1.45, 1.50 and 1.10, respectively. From this study, the ovsynch with intravaginal sponge protocol found to be an effective protocol for ovulation synchronization in Tellicherry goats.
11

Enhanced mTORC1 signaling and Protein Synthesis in Parkinson’s Disease Pathogenesis Disease Pathogenesis

Mohammed Khan et al.Oct 6, 2022
+14
R
H
M
Pathologic α-syn destabilizes the TSC 1 and 2 complex leading to mTORC1 activation, enhanced protein translation and neurodegeneration in PD. Abstract: Pathological α-synuclein (α-syn) plays an important role in the pathogenesis of α-synucleinopathies such as Parkinson’s disease (PD). Disruption of protein homeostasis is thought be central to PD pathogenesis, however the molecular mechanism of this deregulation is poorly understood. Here we report that pathologic α-syn binds to tuberous sclerosis protein (TSC) 2 and destabilizes the TSC1-TSC2 complex leading to activation of the mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) and enhanced mRNA translation. Dopamine neuron loss, behavioral deficits and aberrant biochemical signaling in the α-syn preformed fibril (PFF) and Drosophila α-syn transgenic models of pathologic α-syn induced degeneration were attenuated by genetic and pharmacologic inhibition of mTOR and protein translation. Our findings establish a potential molecular mechanism by which pathologic α-syn activates mTORC1 leading to enhanced protein translation and concomitant neurodegeneration in PD.