FC
Fred Chang
Author with expertise in Regulation and Function of Microtubules in Cell Division
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
19
(68% Open Access)
Cited by:
2,158
h-index:
59
/
i10-index:
96
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A Mechanism for Nuclear Positioning in Fission Yeast Based on Microtubule Pushing

Phong Tran et al.Apr 16, 2001
The correct positioning of the nucleus is often important in defining the spatial organization of the cell, for example, in determining the cell division plane. In interphase Schizosaccharomyces pombe cells, the nucleus is positioned in the middle of the cylindrical cell in an active microtubule (MT)-dependent process. Here, we used green fluorescent protein markers to examine the dynamics of MTs, spindle pole body, and the nuclear envelope in living cells. We find that interphase MTs are organized in three to four antiparallel MT bundles arranged along the long axis of the cell, with MT plus ends facing both the cell tips and minus ends near the middle of the cell. The MT bundles are organized from medial MT-organizing centers that may function as nuclear attachment sites. When MTs grow to the cell tips, they exert transient forces produced by plus end MT polymerization that push the nucleus. After an average of 1.5 min of growth at the cell tip, MT plus ends exhibit catastrophe and shrink back to the nuclear region before growing back to the cell tip. Computer modeling suggests that a balance of these pushing MT forces can provide a mechanism to position the nucleus at the middle of the cell.
0
Citation483
0
Save
0

The outer membrane is an essential load-bearing element in Gram-negative bacteria

Enrique Rojas et al.Jul 1, 2018
Gram-negative bacteria possess a complex cell envelope that consists of a plasma membrane, a peptidoglycan cell wall and an outer membrane. The envelope is a selective chemical barrier1 that defines cell shape2 and allows the cell to sustain large mechanical loads such as turgor pressure3. It is widely believed that the covalently cross-linked cell wall underpins the mechanical properties of the envelope4,5. Here we show that the stiffness and strength of Escherichia coli cells are largely due to the outer membrane. Compromising the outer membrane, either chemically or genetically, greatly increased deformation of the cell envelope in response to stretching, bending and indentation forces, and induced increased levels of cell lysis upon mechanical perturbation and during L-form proliferation. Both lipopolysaccharides and proteins contributed to the stiffness of the outer membrane. These findings overturn the prevailing dogma that the cell wall is the dominant mechanical element within Gram-negative bacteria, instead demonstrating that the outer membrane can be stiffer than the cell wall, and that mechanical loads are often balanced between these structures. The outer membrane of Gram-negative bacteria is shown to be at least as stiff as the cell wall, and this property enables it to protect cells from mechanical pertubations.
0
Citation463
0
Save
0

cdc12p, a Protein Required for Cytokinesis in Fission Yeast, Is a Component of the Cell Division Ring and Interacts with Profilin

Fred Chang et al.Apr 7, 1997
As in many other eukaryotic cells, cell division in fission yeast depends on the assembly of an actin ring that circumscribes the middle of the cell. Schizosaccharomyces pombe cdc12 is an essential gene necessary for actin ring assembly and septum formation. Here we show that cdc12p is a member of a family of proteins including Drosophila diaphanous, Saccharomyces cerevisiae BNI1, and S. pombe fus1, which are involved in cytokinesis or other actin-mediated processes. Using indirect immunofluorescence, we show that cdc12p is located in the cell division ring and not in other actin structures. When overexpressed, cdc12p is located at a medial spot in interphase that anticipates the future ring site. cdc12p localization is altered in actin ring mutants. cdc8 (tropomyosin homologue), cdc3 (profilin homologue), and cdc15 mutants exhibit no specific cdc12p staining during mitosis. cdc4 mutant cells exhibit a medial cortical cdc12p spot in place of a ring. mid1 mutant cells generally exhibit a cdc12p spot with a single cdc12p strand extending in a random direction. Based on these patterns, we present a model in which ring assembly originates from a single point on the cortex and in which a molecular pathway for the functions of cytokinesis proteins is suggested. Finally, we found that cdc12 and cdc3 mutants show a syntheticlethal genetic interaction, and a proline-rich domain of cdc12p binds directly to profilin cdc3p in vitro, suggesting that one function of cdc12p in ring assembly is to bind profilin.
0
Citation415
0
Save
57

nucGEMs probe the biophysical properties of the nucleoplasm

Tamás Szórádi et al.Nov 20, 2021
Abstract The cell interior is highly crowded and far from thermodynamic equilibrium. This environment can dramatically impact molecular motion and assembly, and therefore influence subcellular organization and biochemical reaction rates. These effects depend strongly on length-scale, with the least information available at the important mesoscale (10-100 nanometers), which corresponds to the size of crucial regulatory molecules such as RNA polymerase II. It has been challenging to study the mesoscale physical properties of the nucleoplasm because previous methods were labor-intensive and perturbative. Here, we report nuclear Genetically Encoded Multimeric nanoparticles (nucGEMs). Introduction of a single gene leads to continuous production and assembly of protein-based bright fluorescent nanoparticles of 40 nm diameter. We implemented nucGEMs in budding and fission yeast and in mammalian cell lines. We found differences in particle motility between the nucleus and the cytosol at the mesoscale, that mitotic chromosome condensation ejects nucGEMs from the nucleus, and that nucGEMs are excluded from heterochromatin and the nucleolus. nucGEMs enable hundreds of nuclear rheology experiments per hour, and allow evolutionary comparison of the physical properties of the cytosol and nucleoplasm.
57
Citation16
0
Save
21

Control of nuclear size by osmotic forces in Schizosaccharomyces pombe

Joël Lemière et al.Dec 7, 2021
Abstract The size of the nucleus scales robustly with cell size so that the nuclear-to-cell volume ratio (N/C ratio) is maintained during cell growth in many cell types. The mechanism responsible for this scaling remains mysterious. Previous studies have established that the N/C ratio is not determined by DNA amount but is instead influenced by factors such as nuclear envelope mechanics and nuclear transport. Here, we developed a quantitative model for nuclear size control based upon colloid osmotic pressure and tested key predictions in the fission yeast Schizosaccharomyces pombe . This model posits that the N/C ratio is determined by the numbers of macromolecules in the nucleoplasm and cytoplasm. Osmotic shift experiments showed that the fission yeast nucleus behaves as an ideal osmometer whose volume is primarily dictated by osmotic forces. Inhibition of nuclear export caused accumulation of macromolecules and an increase in crowding in the nucleoplasm, leading to nuclear swelling. We further demonstrated that the N/C ratio is maintained by a homeostasis mechanism based upon synthesis of macromolecules during growth. These studies demonstrate the functions of colloid osmotic pressure in intracellular organization and size control.
21
Citation4
0
Save
1

Vast heterogeneity in cytoplasmic diffusion rates revealed by nanorheology and Doppelgänger simulations

Rikki Garner et al.May 12, 2022
Abstract The cytoplasm is a complex, crowded, actively-driven environment whose biophysical characteristics modulate critical cellular processes such as cytoskeletal dynamics, phase separation, and stem-cell fate. Little is known about the variance in these cytoplasmic properties. Here, we employed particle-tracking nanorheology on genetically encoded multimeric 40-nm nanoparticles (GEMs) to measure diffusion within the cytoplasm of the fission yeast Schizosaccharomyces pombe . We found that the apparent diffusion coefficients of individual GEM particles varied over a 400-fold range, while the differences in average particle diffusivity among individual cells spanned a 10-fold range. To determine the origin of this heterogeneity, we developed a Doppelgänger Simulation approach that uses stochastic simulations of GEM diffusion that replicate the experimental statistics on a particle-by-particle basis, such that each experimental track and cell had a one-to-one correspondence with their simulated counterpart. These simulations showed that the large intra- and inter-cellular variations in diffusivity could not be explained by experimental variability but could only be reproduced with stochastic models that assume a wide intra- and inter-cellular variation in cytoplasmic viscosity. The simulation combining intra- and inter-cellular variation in viscosity also predicted weak non-ergodicity in GEM diffusion, consistent with the experimental data. To probe the origin of this variation, we found that the variance in GEM diffusivity was largely independent of factors such as temperature, cytoskeletal effects, cell cycle stage and spatial locations, but was magnified by hyperosmotic shocks. Taken together, our results provide a striking demonstration that the cytoplasm is not “well-mixed” but represents a highly heterogeneous environment in which subcellular components at the 40-nm sizescale experience dramatically different effective viscosities within an individual cell, as well as in different cells in a genetically identical population. These findings carry significant implications for the origins and regulation of biological noise at cellular and subcellular levels. Significance Biophysical properties of the cytoplasm influence many cellular processes, from differentiation to cytoskeletal dynamics, yet little is known about how tightly cells control these properties. We developed a combined experimental and computational approach to analyze cytoplasmic heterogeneity through the lens of diffusion. We find that the apparent cytoplasmic viscosity varies tremendously – over 100-fold within any individual cell, and over 10-fold among individual cells when comparing averages of all particles measured for each cell. The variance was largely independent of temperature, the cytoskeleton, cell cycle stage, and localization, but was magnified under hyperosmotic shock. This suggests that cytoplasmic heterogeneity contributes substantially to biological variability within and between cells, and has significant implications for any cellular process that depends on diffusion. Graphical abstract
1
Citation1
0
Save
Load More