UR
Utkrisht Rajkumar
Author with expertise in Genomic Landscape of Cancer and Mutational Signatures
University of California, San Diego, UC San Diego Health System, University of California System
+ 4 more
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(50% Open Access)
Cited by:
307
h-index:
10
/
i10-index:
10
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
3

Extrachromosomal DNA is associated with oncogene amplification and poor outcome across multiple cancers

Hoon Kim et al.Nov 17, 2022
+17
K
N
H
Extrachromosomal DNA (ecDNA) amplification promotes intratumoral genetic heterogeneity and accelerated tumor evolution1–3; however, its frequency and clinical impact are unclear. Using computational analysis of whole-genome sequencing data from 3,212 cancer patients, we show that ecDNA amplification frequently occurs in most cancer types but not in blood or normal tissue. Oncogenes were highly enriched on amplified ecDNA, and the most common recurrent oncogene amplifications arose on ecDNA. EcDNA amplifications resulted in higher levels of oncogene transcription compared to copy number-matched linear DNA, coupled with enhanced chromatin accessibility, and more frequently resulted in transcript fusions. Patients whose cancers carried ecDNA had significantly shorter survival, even when controlled for tissue type, than patients whose cancers were not driven by ecDNA-based oncogene amplification. The results presented here demonstrate that ecDNA-based oncogene amplification is common in cancer, is different from chromosomal amplification and drives poor outcome for patients across many cancer types. A pan-cancer analysis finds that extrachromosomal DNA is pervasive and associated with oncogene amplification and poor patient outcomes.
67

Principles of ecDNA random inheritance drive rapid genome change and therapy resistance in human cancers

Joshua Lange et al.Oct 24, 2023
+16
Y
C
J
The foundational principles of Darwinian evolution are variation, selection, and identity by descent. Oncogene amplification on extrachromosomal DNA (ecDNA) is a common event, driving aggressive tumour growth, drug resistance, and shorter survival in patients 1-4 . Currently, the impact of non-chromosomal oncogene inheritance—random identity by descent—is not well understood. Neither is the impact of ecDNA on variation and selection. Here, integrating mathematical modeling, unbiased image analysis, CRISPR-based ecDNA tagging, and live-cell imaging, we identify a set of basic “rules” for how random ecDNA inheritance drives oncogene copy number and distribution, resulting in extensive intratumoural ecDNA copy number heterogeneity and rapid adaptation to metabolic stress and targeted cancer treatment. Observed ecDNAs obligatorily benefit host cell survival or growth and can change within a single cell cycle. In studies ranging from well-curated, patient-derived cancer cell cultures to clinical tumour samples from patients with glioblastoma and neuroblastoma treated with oncogene-targeted drugs, we show how these ecDNA inheritance “rules” can predict, a priori , some of the aggressive features of ecDNA-containing cancers. These properties are entailed by their ability to rapidly change their genomes in a way that is not possible for cancers driven by chromosomal oncogene amplification. These results shed new light on how the non-chromosomal random inheritance pattern of ecDNA underlies poor outcomes for cancer patients.
67
Citation14
0
Save
60

EcDNA hubs drive cooperative intermolecular oncogene expression

King Hung et al.Oct 24, 2023
+16
L
K
K
ABSTRACT Extrachromosomal DNAs (ecDNAs) are prevalent in human cancers and mediate high oncogene expression through elevated copy number and altered gene regulation 1 . Gene expression typically involves distal enhancer DNA elements that contact and activate genes on the same chromosome 2,3 . Here we show that ecDNA hubs, comprised of ~10-100 ecDNAs clustered in the nucleus of interphase cells, drive intermolecular enhancer input for amplified oncogene expression. Single-molecule sequencing, single-cell multiome, and 3D enhancer connectome reveal subspecies of MYC-PVT1 ecDNAs lacking enhancers that access intermolecular and ectopic enhancer-promoter interactions in ecDNA hubs. ecDNA hubs persist without transcription and are tethered by BET protein BRD4. BET inhibitor JQ1 disperses ecDNA hubs, preferentially inhibits ecDNA oncogene transcription, and kills ecDNA+ cancer cells. Two amplified oncogenes MYC and FGFR2 intermix in ecDNA hubs, engage in intermolecular enhancer-promoter interactions, and transcription is uniformly sensitive to JQ1. Thus, ecDNA hubs are nuclear bodies of many ecDNAs tethered by proteins and platforms for cooperative transcription, leveraging the power of oncogene diversification and combinatorial DNA interactions. We suggest ecDNA hubs, rather than individual ecDNAs, as units of oncogene function, cooperative evolution, and new targets for cancer therapy.
0

Breakage fusion bridge cycles drive high oncogene copy number, but not intratumoral genetic heterogeneity or rapid cancer genome change

Siavash Dehkordi et al.Dec 14, 2023
+25
J
I
S
Oncogene amplification is a major driver of cancer pathogenesis. Breakage fusion bridge (BFB) cycles, like extrachromosomal DNA (ecDNA), can lead to high copy numbers of oncogenes, but their impact on intratumoral heterogeneity, treatment response, and patient survival are not well understood due to difficulty in detecting them by DNA sequencing. We describe a novel algorithm that detects and reconstructs BFB amplifications using optical genome maps (OGMs), called OM2BFB. OM2BFB showed high precision (>93%) and recall (92%) in detecting BFB amplifications in cancer cell lines, PDX models and primary tumors. OM-based comparisons demonstrated that short-read BFB detection using our AmpliconSuite (AS) toolkit also achieved high precision, albeit with reduced sensitivity. We detected 371 BFB events using whole genome sequences from 2,557 primary tumors and cancer lines. BFB amplifications were preferentially found in cervical, head and neck, lung, and esophageal cancers, but rarely in brain cancers. BFB amplified genes show lower variance of gene expression, with fewer options for regulatory rewiring relative to ecDNA amplified genes. BFB positive (BFB (+)) tumors showed reduced heterogeneity of amplicon structures, and delayed onset of resistance, relative to ecDNA(+) tumors. EcDNA and BFB amplifications represent contrasting mechanisms to increase the copy numbers of oncogene with markedly different characteristics that suggest different routes for intervention.
0

AmpliconReconstructor: Integrated analysis of NGS and optical mapping resolves the complex structures of focal amplifications in cancer

Jens Luebeck et al.May 7, 2020
+9
S
C
J
Oncogene amplification, a major driver of cancer pathogenicity, is often mediated through focal amplification of genomic segments. Recent results implicate extrachromosomal DNA (ecDNA) as the primary mechanism driving focal copy number amplification (fCNA) - enabling gene amplification, rapid tumor evolution, and the rewiring of regulatory circuitry. Resolving an fCNA’s structure is a first step in deciphering the mechanisms of its genesis and the subsequent biological consequences. Here, we introduce a powerful new computational method, AmpliconReconstructor (AR), for integrating optical mapping (OM) of long DNA fragments (>150kb) with next-generation sequencing (NGS) to resolve fCNAs at single-nucleotide resolution. AR uses an NGS-derived breakpoint graph alongside OM scaffolds to produce high-fidelity reconstructions. After validating performance by extensive simulations, we used AR to reconstruct fCNAs in seven cancer cell lines to reveal the complex architecture of ecDNA, breakage-fusion-bridge cycles, and other complex rearrangements. By distinguishing between chromosomal and extrachromosomal origins, and by reconstructing the rearrangement signatures associated with a given fCNA’s generative mechanism, AR enables a more thorough understanding of the origins of fCNAs, and their functional consequences.
1

Principles of ecDNA random inheritance drive rapid genome change and therapy resistance in human cancers

Joshua Lange et al.Oct 24, 2023
+16
Y
C
J
The foundational principles of Darwinian evolution are variation, selection, and identity by descent. Oncogene amplification on extrachromosomal DNA (ecDNA) is a common event, driving aggressive tumour growth, drug resistance, and shorter survival in patients. Currently, the impact of non-chromosomal oncogene inheritance - random identity by descent - is not well understood. Neither is the impact of ecDNA on variation and selection. Here, integrating mathematical modeling, unbiased image analysis, CRISPR-based ecDNA tagging, and live-cell imaging, we identify a set of basic rules for how random ecDNA inheritance drives oncogene copy number and distribution, resulting in extensive intratumoural ecDNA copy number heterogeneity and rapid adaptation to metabolic stress and targeted cancer treatment. Observed ecDNAs obligatorily benefit host cell survival or growth and can change within a single cell cycle. In studies ranging from well-curated, patient-derived cancer cell cultures to clinical tumour samples from patients with glioblastoma and neuroblastoma treated with oncogene-targeted drugs, we show how these ecDNA inheritance rules can predict, a priori, some of the aggressive features of ecDNA-containing cancers. These properties are entailed by their ability to rapidly change their genomes in a way that is not possible for cancers driven by chromosomal oncogene amplification. These results shed new light on how the non-chromosomal random inheritance pattern of ecDNA underlies poor outcomes for cancer patients.