PM
Paul Mischel
Author with expertise in Genomic Landscape of Cancer and Mutational Signatures
Stanford University, Stratford University, The Francis Crick Institute
+ 10 more
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
26
(73% Open Access)
Cited by:
933
h-index:
103
/
i10-index:
232
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Extrachromosomal oncogene amplification drives tumour evolution and genetic heterogeneity

Kristen Turner et al.Nov 17, 2022
+18
D
V
K
Human cells have twenty-three pairs of chromosomes. In cancer, however, genes can be amplified in chromosomes or in circular extrachromosomal DNA (ecDNA), although the frequency and functional importance of ecDNA are not understood. We performed whole-genome sequencing, structural modelling and cytogenetic analyses of 17 different cancer types, including analysis of the structure and function of chromosomes during metaphase of 2,572 dividing cells, and developed a software package called ECdetect to conduct unbiased, integrated ecDNA detection and analysis. Here we show that ecDNA was found in nearly half of human cancers; its frequency varied by tumour type, but it was almost never found in normal cells. Driver oncogenes were amplified most commonly in ecDNA, thereby increasing transcript level. Mathematical modelling predicted that ecDNA amplification would increase oncogene copy number and intratumoural heterogeneity more effectively than chromosomal amplification. We validated these predictions by quantitative analyses of cancer samples. The results presented here suggest that ecDNA contributes to accelerated evolution in cancer.
3

Extrachromosomal DNA is associated with oncogene amplification and poor outcome across multiple cancers

Hoon Kim et al.Nov 17, 2022
+17
K
N
H
Extrachromosomal DNA (ecDNA) amplification promotes intratumoral genetic heterogeneity and accelerated tumor evolution1–3; however, its frequency and clinical impact are unclear. Using computational analysis of whole-genome sequencing data from 3,212 cancer patients, we show that ecDNA amplification frequently occurs in most cancer types but not in blood or normal tissue. Oncogenes were highly enriched on amplified ecDNA, and the most common recurrent oncogene amplifications arose on ecDNA. EcDNA amplifications resulted in higher levels of oncogene transcription compared to copy number-matched linear DNA, coupled with enhanced chromatin accessibility, and more frequently resulted in transcript fusions. Patients whose cancers carried ecDNA had significantly shorter survival, even when controlled for tissue type, than patients whose cancers were not driven by ecDNA-based oncogene amplification. The results presented here demonstrate that ecDNA-based oncogene amplification is common in cancer, is different from chromosomal amplification and drives poor outcome for patients across many cancer types. A pan-cancer analysis finds that extrachromosomal DNA is pervasive and associated with oncogene amplification and poor patient outcomes.
4

Targeting glioblastoma signaling and metabolism with a re-purposed brain-penetrant drug

Junfeng Bi et al.Mar 18, 2023
+22
J
A
J
The highly lethal brain cancer glioblastoma (GBM) poses a daunting challenge because the blood-brain barrier renders potentially druggable amplified or mutated oncoproteins relatively inaccessible. Here, we identify sphingomyelin phosphodiesterase 1 (SMPD1), an enzyme that regulates the conversion of sphingomyelin to ceramide, as an actionable drug target in GBM. We show that the highly brain-penetrant antidepressant fluoxetine potently inhibits SMPD1 activity, killing GBMs, through inhibition of epidermal growth factor receptor (EGFR) signaling and via activation of lysosomal stress. Combining fluoxetine with temozolomide, a standard of care for GBM, causes massive increases in GBM cell death and complete tumor regression in mice. Incorporation of real-world evidence from electronic medical records from insurance databases reveals significantly increased survival in GBM patients treated with fluoxetine, which was not seen in patients treated with other selective serotonin reuptake inhibitor (SSRI) antidepressants. These results nominate the repurposing of fluoxetine as a potentially safe and promising therapy for patients with GBM and suggest prospective randomized clinical trials.
4
Citation43
4
Save
67

Principles of ecDNA random inheritance drive rapid genome change and therapy resistance in human cancers

Joshua Lange et al.Oct 24, 2023
+16
Y
C
J
The foundational principles of Darwinian evolution are variation, selection, and identity by descent. Oncogene amplification on extrachromosomal DNA (ecDNA) is a common event, driving aggressive tumour growth, drug resistance, and shorter survival in patients 1-4 . Currently, the impact of non-chromosomal oncogene inheritance—random identity by descent—is not well understood. Neither is the impact of ecDNA on variation and selection. Here, integrating mathematical modeling, unbiased image analysis, CRISPR-based ecDNA tagging, and live-cell imaging, we identify a set of basic “rules” for how random ecDNA inheritance drives oncogene copy number and distribution, resulting in extensive intratumoural ecDNA copy number heterogeneity and rapid adaptation to metabolic stress and targeted cancer treatment. Observed ecDNAs obligatorily benefit host cell survival or growth and can change within a single cell cycle. In studies ranging from well-curated, patient-derived cancer cell cultures to clinical tumour samples from patients with glioblastoma and neuroblastoma treated with oncogene-targeted drugs, we show how these ecDNA inheritance “rules” can predict, a priori , some of the aggressive features of ecDNA-containing cancers. These properties are entailed by their ability to rapidly change their genomes in a way that is not possible for cancers driven by chromosomal oncogene amplification. These results shed new light on how the non-chromosomal random inheritance pattern of ecDNA underlies poor outcomes for cancer patients.
67
Citation14
0
Save
60

Targeted profiling of human extrachromosomal DNA by CRISPR-CATCH

King Hung et al.Oct 24, 2023
+6
S
J
K
ABSTRACT Extrachromosomal DNA (ecDNA) is a common mode of oncogene amplification but is challenging to analyze. Here, we present a method for targeted purification of megabase-sized ecDNA by combining in-vitro CRISPR-Cas9 treatment and pulsed field gel electrophoresis of agarose-entrapped genomic DNA (CRISPR-CATCH). We demonstrate strong enrichment of ecDNA molecules containing EGFR , FGFR2 and MYC from human cancer cells. Targeted purification of ecDNA versus chromosomal DNA enabled phasing of genetic variants and provided definitive proof of an EGFRvIII mutation on ecDNA and wild-type EGFR on chromosomal DNA in a glioblastoma neurosphere model. CRISPR-CATCH followed by nanopore sequencing enabled single-molecule ecDNA methylation profiling and revealed hypomethylation of the EGFR promoter on ecDNA compared to the native chromosomal locus in the same cells. Finally, separation of ecDNA species by size and sequencing allowed accurate reconstruction of megabase- sized ecDNA structures with base-pair resolution. CRISPR-CATCH is a new addition to the toolkit for studying focal amplifications in cancer and will accelerate studies aiming to explore the genetic and epigenetic landscapes of ecDNA.
60
Paper
Citation9
0
Save
24

The landscape of extrachromosomal circular DNA in medulloblastoma

Owen Chapman et al.Oct 24, 2023
+28
S
J
O
SUMMARY Extrachromosomal circular DNA (ecDNA) is an important driver of aggressive tumor growth, promoting high oncogene copy number, intratumoral heterogeneity, accelerated evolution of drug resistance, enhancer rewiring, and poor outcome. ecDNA has been reported in medulloblastoma (MB), the most common malignant pediatric brain tumor, but the ecDNA landscape and its association with specific MB subgroups, its impact on enhancer rewiring, and its potential clinical implications, are not known. We assembled a retrospective cohort of 468 MB patient samples with available whole genome sequencing (WGS) data covering the four major MB subgroups WNT, SHH, Group 3 and Group 4. Using computational methods for the detection and reconstruction of ecDNA 1 , we find ecDNA in 82 patients (18%) and observe that ecDNA+ MB patients are more than twice as likely to relapse and three times as likely to die of disease. In addition, we find that individual medulloblastoma tumors often harbor multiple ecDNAs, each containing different amplified oncogenes along with co-amplified non-coding regulatory enhancers. ecDNA was substantially more prevalent among 31 analyzed patient-derived xenograft (PDX) models and cell lines than in our patient cohort. By mapping the accessible chromatin and 3D conformation landscapes of MB tumors that harbor ecDNA, we observe frequent candidate “enhancer rewiring” events that spatially link oncogenes with co-amplified enhancers. Our study reveals the frequency and diversity of ecDNA in a subset of highly aggressive tumors and suggests enhancer rewiring as a frequent oncogenic mechanism of ecDNAs in MB. Further, these results demonstrate that ecDNA is a frequent and potent driver of poor outcome in MB patients.
24
Citation8
0
Save
22

Epigenetic dysregulation from chromosomal transit in micronuclei

Albert Agustinus et al.Oct 24, 2023
+21
B
R
A
Chromosomal instability (CIN) and epigenetic alterations are characteristics of advanced and metastatic cancers [1-4], yet whether they are mechanistically linked is unknown. Here we show that missegregation of mitotic chromosomes, their sequestration in micronuclei [5, 6], and subsequent micronuclear envelope rupture [7] profoundly disrupt normal histone post-translational modifications (PTMs), a phenomenon conserved across humans and mice as well as cancer and non-transformed cells. Some of the changes to histone PTMs occur due to micronuclear envelope rupture whereas others are inherited from mitotic abnormalities prior to micronucleus formation. Using orthogonal techniques, we show that micronuclei exhibit extensive differences in chromatin accessibility with a strong positional bias between promoters and distal or intergenic regions. Finally, we show that inducing CIN engenders widespread epigenetic dysregulation and that chromosomes which transit in micronuclei experience durable abnormalities in their accessibility long after they have been reincorporated into the primary nucleus. Thus, in addition to genomic copy number alterations, CIN can serve as a vehicle for epigenetic reprogramming and heterogeneity in cancer.
22
Citation5
0
Save
0

CoRAL accurately resolves extrachromosomal DNA genome structures with long-read sequencing

Kaiyuan Zhu et al.Sep 12, 2024
+8
J
M
K
Extrachromosomal DNA (ecDNA) is a central mechanism for focal oncogene amplification in cancer, occurring in approximately 15% of early-stage cancers and 30% of late-stage cancers. EcDNAs drive tumor formation, evolution, and drug resistance by dynamically modulating oncogene copy-number and rewiring gene-regulatory networks. Elucidating the genomic architecture of ecDNA amplifications is critical for understanding tumor pathology and developing more effective therapies. Paired-end short-read (Illumina) sequencing and mapping have been utilized to represent ecDNA amplifications using a breakpoint graph, where the inferred architecture of ecDNA is encoded as a cycle in the graph. Traversals of breakpoint graph have been used to successfully predict ecDNA presence in cancer samples. However, short-read technologies are intrinsically limited in the identification of breakpoints, phasing together of complex rearrangements and internal duplications, and deconvolution of cell-to-cell heterogeneity of ecDNA structures. Long-read technologies, such as from Oxford Nanopore Technologies, have the potential to improve inference as the longer reads are better at mapping structural variants and are more likely to span rearranged or duplicated regions. Here, we propose CoRAL (Complete Reconstruction of Amplifications with Long reads), for reconstructing ecDNA architectures using long-read data. CoRAL reconstructs likely cyclic architectures using quadratic programming that simultaneously optimizes parsimony of reconstruction, explained copy number, and consistency of long-read mapping. CoRAL substantially improves reconstructions in extensive simulations and 10 datasets from previously-characterized cell lines as compared to previous short and long-read based tools. As long-read usage becomes wide-spread, we anticipate that CoRAL will be a valuable tool for profiling the landscape and evolution of focal amplifications in tumors.
0
Paper
Citation1
0
Save
15

Discovery and Functional Characterization of Pro-growth Enhancers in Human Cancer Cells

Poshen Chen et al.Oct 24, 2023
+10
L
P
P
Abstract Precision medicine depends critically on developing treatment strategies that can selectively target cancer cells with minimal adverse effects. Identifying unique transcriptional regulators of oncogenic signaling, and targeting cancer-cell-specific enhancers that may be active only in specific tumor cell lineages, could provide the necessary high specificity, but a scarcity of functionally validated enhancers in cancer cells presents a significant hurdle to this strategy. We address this limitation by carrying out large-scale functional screens for pro-growth enhancers using highly multiplexed CRISPR-based perturbation and sequencing in multiple cancer cell lines. We used this strategy to identify 488 pro-growth enhancers in a colorectal cancer cell line and 22 functional enhancers for the MYC and MYB key oncogenes in an additional nine cancer cell lines. The majority of pro-growth enhancers are accessible and presumably active only in cancer cells but not in normal tissues, and are enriched for elements associated with poor prognosis in colorectal cancer. We further identify master transcriptional regulators and demonstrate that the cancer pro-growth enhancers are modulated by lineage-specific transcription factors acting downstream of growth signaling pathways. Our results uncover context-specific, potentially actionable pro-growth enhancers from cancer cells, yielding insight into altered oncogenic transcription and revealing potential therapeutic targets for cancer treatment.
15
Citation1
0
Save
0

Frequent extrachromosomal oncogene amplification drives aggressive tumors

Hoon Kim et al.May 7, 2020
+9
K
N
H
Extrachromosomal DNA (ecDNA) amplification promotes high oncogene copy number, intratumoral genetic heterogeneity, and accelerated tumor evolution, but its frequency and clinical impact are not well understood. Here we show, using computational analysis of whole-genome sequencing data from 1,979 cancer patients, that ecDNA amplification occurs in at least 26% of human cancers, of a wide variety of histological types, but not in whole blood or normal tissue. We demonstrate a highly significant enrichment for oncogenes on amplified ecDNA and that the most common recurrent oncogene amplifications arise on ecDNA. EcDNA amplifications resulted in higher levels of oncogene transcription compared to copy number matched linear DNA, coupled with enhanced chromatin accessibility. Patients whose tumors have ecDNA-based oncogene amplification showed increase of cell proliferation signature activity, greater likelihood of lymph node spread at initial diagnosis, and significantly shorter survival, even when controlled for tissue type, than do patients whose cancers are not driven by ecDNA-based oncogene amplification. The results presented here demonstrate that ecDNA-based oncogene amplification plays a central role in driving the poor outcome for patients with some of the most aggressive forms of cancers.
Load More