BC
Bianxiao Cui
Author with expertise in Neural Interface Technology
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
42
(67% Open Access)
Cited by:
4,955
h-index:
49
/
i10-index:
106
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Chemically defined generation of human cardiomyocytes

Paul Burridge et al.Jun 15, 2014
A simple, robust, chemically defined method for generating cardiomyocytes from human pluripotent stem cells is described. It should enable the identification of conditions for maturation of these cells. Existing methods for human induced pluripotent stem cell (hiPSC) cardiac differentiation are efficient but require complex, undefined medium constituents that hinder further elucidation of the molecular mechanisms of cardiomyogenesis. Using hiPSCs derived under chemically defined conditions on synthetic matrices, we systematically developed an optimized cardiac differentiation strategy, using a chemically defined medium consisting of just three components: the basal medium RPMI 1640, L-ascorbic acid 2-phosphate and rice-derived recombinant human albumin. Along with small molecule–based induction of differentiation, this protocol produced contractile sheets of up to 95% TNNT2+ cardiomyocytes at a yield of up to 100 cardiomyocytes for every input pluripotent cell and was effective in 11 hiPSC lines tested. This chemically defined platform for cardiac specification of hiPSCs will allow the elucidation of cardiomyocyte macromolecular and metabolic requirements and will provide a minimal system for the study of maturation and subtype specification.
0
Citation1,382
0
Save
0

Intracellular recording of action potentials by nanopillar electroporation

Chong Xie et al.Feb 12, 2012
Action potentials have a central role in the nervous system and in many cellular processes, notably those involving ion channels. The accurate measurement of action potentials requires efficient coupling between the cell membrane and the measuring electrodes. Intracellular recording methods such as patch clamping involve measuring the voltage or current across the cell membrane by accessing the cell interior with an electrode, allowing both the amplitude and shape of the action potentials to be recorded faithfully with high signal-to-noise ratios1. However, the invasive nature of intracellular methods usually limits the recording time to a few hours1, and their complexity makes it difficult to simultaneously record more than a few cells. Extracellular recording methods, such as multielectrode arrays2 and multitransistor arrays3, are non-invasive and allow long-term and multiplexed measurements. However, extracellular recording sacrifices the one-to-one correspondence between the cells and electrodes, and also suffers from significantly reduced signal strength and quality. Extracellular techniques are not, therefore, able to record action potentials with the accuracy needed to explore the properties of ion channels. As a result, the pharmacological screening of ion-channel drugs is usually performed by low-throughput intracellular recording methods4. The use of nanowire transistors5,6,7, nanotube-coupled transistors8 and micro gold-spine and related electrodes9,10,11,12 can significantly improve the signal strength of recorded action potentials. Here, we show that vertical nanopillar electrodes can record both the extracellular and intracellular action potentials of cultured cardiomyocytes over a long period of time with excellent signal strength and quality. Moreover, it is possible to repeatedly switch between extracellular and intracellular recording by nanoscale electroporation and resealing processes. Furthermore, vertical nanopillar electrodes can detect subtle changes in action potentials induced by drugs that target ion channels. Arrays of vertical nanopillar electrodes can be used for both intracellular and extracellular recording with excellent signal strength and quality, and minimal damage to the cells.
0

One at a time, live tracking of NGF axonal transport using quantum dots

Bianxiao Cui et al.Aug 15, 2007
Retrograde axonal transport of nerve growth factor (NGF) signals is critical for the survival, differentiation, and maintenance of peripheral sympathetic and sensory neurons and basal forebrain cholinergic neurons. However, the mechanisms by which the NGF signal is propagated from the axon terminal to the cell body are yet to be fully elucidated. To gain insight into the mechanisms, we used quantum dot-labeled NGF (QD-NGF) to track the movement of NGF in real time in compartmentalized culture of rat dorsal root ganglion (DRG) neurons. Our studies showed that active transport of NGF within the axons was characterized by rapid, unidirectional movements interrupted by frequent pauses. Almost all movements were retrograde, but short-distance anterograde movements were occasionally observed. Surprisingly, quantitative analysis at the single molecule level demonstrated that the majority of NGF-containing endosomes contained only a single NGF dimer. Electron microscopic analysis of axonal vesicles carrying QD-NGF confirmed this finding. The majority of QD-NGF was found to localize in vesicles 50–150 nm in diameter with a single lumen and no visible intralumenal membranous components. Our findings point to the possibility that a single NGF dimer is sufficient to sustain signaling during retrograde axonal transport to the cell body.
0

Maturation and circuit integration of transplanted human cortical organoids

Omer Revah et al.Oct 12, 2022
Abstract Self-organizing neural organoids represent a promising in vitro platform with which to model human development and disease 1–5 . However, organoids lack the connectivity that exists in vivo, which limits maturation and makes integration with other circuits that control behaviour impossible. Here we show that human stem cell-derived cortical organoids transplanted into the somatosensory cortex of newborn athymic rats develop mature cell types that integrate into sensory and motivation-related circuits. MRI reveals post-transplantation organoid growth across multiple stem cell lines and animals, whereas single-nucleus profiling shows progression of corticogenesis and the emergence of activity-dependent transcriptional programs. Indeed, transplanted cortical neurons display more complex morphological, synaptic and intrinsic membrane properties than their in vitro counterparts, which enables the discovery of defects in neurons derived from individuals with Timothy syndrome. Anatomical and functional tracings show that transplanted organoids receive thalamocortical and corticocortical inputs, and in vivo recordings of neural activity demonstrate that these inputs can produce sensory responses in human cells. Finally, cortical organoids extend axons throughout the rat brain and their optogenetic activation can drive reward-seeking behaviour. Thus, transplanted human cortical neurons mature and engage host circuits that control behaviour. We anticipate that this approach will be useful for detecting circuit-level phenotypes in patient-derived cells that cannot otherwise be uncovered.
0

Constructing Highly Uniform Onion-Ring-like Graphitic Carbon Nitride for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution

Lifeng Cui et al.Jun 4, 2018
The introduction of microstructure to the metal-free graphitic carbon nitride (g-C3N4) photocatalyst holds promise in enhancing its catalytic performance. However, producing such microstructured g-C3N4 remains technically challenging due to a complicated synthetic process and high cost. In this study, we develop a facile and in-air chemical vapor deposition (CVD) method that produces onion-ring-like g-C3N4 microstructures in a simple, reliable, and economical manner. This method involves the use of randomly packed 350 nm SiO2 microspheres as a hard template and melamine as a CVD precursor for the deposition of a thin layer of g-C3N4 in the narrow space between the SiO2 microspheres. After dissolution of the microsphere template, the resultant g-C3N4 exhibits uniquely uniform onion-ring-like microstructures. Unlike previously reported g-C3N4 powder morphologies that show various degrees of agglomeration and irregularity, the onion-ring-like g-C3N4 is highly dispersed and uniform. The calculated band gap for onion-ring-like g-C3N4 is 2.58 eV, which is significantly narrower than that of bulk g-C3N4 at 2.70 eV. Experimental characterization and testing suggest that, in comparison with bulk g-C3N4, onion-ring-like g-C3N4 facilitates charge separation, extends the lifetime of photoinduced carriers, exhibits 5-fold higher photocatalytic hydrogen evolution, and shows great potential for photocatalytic applications.
Load More