IN
Ilya Nasrallah
Author with expertise in Analysis of Brain Functional Connectivity Networks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
12
(92% Open Access)
Cited by:
1,802
h-index:
34
/
i10-index:
79
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Effect of Intensive vs Standard Blood Pressure Control on Probable Dementia

Jeff Williamson et al.Jan 28, 2019

Importance

 There are currently no proven treatments to reduce the risk of mild cognitive impairment and dementia. 

Objective

 To evaluate the effect of intensive blood pressure control on risk of dementia. 

Design, Setting, and Participants

 Randomized clinical trial conducted at 102 sites in the United States and Puerto Rico among adults aged 50 years or older with hypertension but without diabetes or history of stroke. Randomization began on November 8, 2010. The trial was stopped early for benefit on its primary outcome (a composite of cardiovascular events) and all-cause mortality on August 20, 2015. The final date for follow-up of cognitive outcomes was July 22, 2018. 

Interventions

 Participants were randomized to a systolic blood pressure goal of either less than 120 mm Hg (intensive treatment group; n = 4678) or less than 140 mm Hg (standard treatment group; n = 4683). 

Main Outcomes and Measures

 The primary cognitive outcome was occurrence of adjudicated probable dementia. Secondary cognitive outcomes included adjudicated mild cognitive impairment and a composite outcome of mild cognitive impairment or probable dementia. 

Results

 Among 9361 randomized participants (mean age, 67.9 years; 3332 women [35.6%]), 8563 (91.5%) completed at least 1 follow-up cognitive assessment. The median intervention period was 3.34 years. During a total median follow-up of 5.11 years, adjudicated probable dementia occurred in 149 participants in the intensive treatment group vs 176 in the standard treatment group (7.2 vs 8.6 cases per 1000 person-years; hazard ratio [HR], 0.83; 95% CI, 0.67-1.04). Intensive BP control significantly reduced the risk of mild cognitive impairment (14.6 vs 18.3 cases per 1000 person-years; HR, 0.81; 95% CI, 0.69-0.95) and the combined rate of mild cognitive impairment or probable dementia (20.2 vs 24.1 cases per 1000 person-years; HR, 0.85; 95% CI, 0.74-0.97). 

Conclusions and Relevance

 Among ambulatory adults with hypertension, treating to a systolic blood pressure goal of less than 120 mm Hg compared with a goal of less than 140 mm Hg did not result in a significant reduction in the risk of probable dementia. Because of early study termination and fewer than expected cases of dementia, the study may have been underpowered for this end point. 

Trial Registration

 ClinicalTrials.gov Identifier:NCT01206062
0

Harmonization of large MRI datasets for the analysis of brain imaging patterns throughout the lifespan

Raymond Pomponio et al.Dec 9, 2019
As medical imaging enters its information era and presents rapidly increasing needs for big data analytics, robust pooling and harmonization of imaging data across diverse cohorts with varying acquisition protocols have become critical. We describe a comprehensive effort that merges and harmonizes a large-scale dataset of 10,477 structural brain MRI scans from participants without a known neurological or psychiatric disorder from 18 different studies that represent geographic diversity. We use this dataset and multi-atlas-based image processing methods to obtain a hierarchical partition of the brain from larger anatomical regions to individual cortical and deep structures and derive age trends of brain structure through the lifespan (3–96 years old). Critically, we present and validate a methodology for harmonizing this pooled dataset in the presence of nonlinear age trends. We provide a web-based visualization interface to generate and present the resulting age trends, enabling future studies of brain structure to compare their data with this reference of brain development and aging, and to examine deviations from ranges, potentially related to disease.
0

Association of Intensive vs Standard Blood Pressure Control With Cerebral White Matter Lesions

Ilya Nasrallah et al.Aug 13, 2019
The effect of intensive blood pressure lowering on brain health remains uncertain.To evaluate the association of intensive blood pressure treatment with cerebral white matter lesion and brain volumes.A substudy of a multicenter randomized clinical trial of hypertensive adults 50 years or older without a history of diabetes or stroke at 27 sites in the United States. Randomization began on November 8, 2010. The overall trial was stopped early because of benefit for its primary outcome (a composite of cardiovascular events) and all-cause mortality on August 20, 2015. Brain magnetic resonance imaging (MRI) was performed on a subset of participants at baseline (n = 670) and at 4 years of follow-up (n = 449); final follow-up date was July 1, 2016.Participants were randomized to a systolic blood pressure (SBP) goal of either less than 120 mm Hg (intensive treatment, n = 355) or less than 140 mm Hg (standard treatment, n = 315).The primary outcome was change in total white matter lesion volume from baseline. Change in total brain volume was a secondary outcome.Among 670 recruited patients who had baseline MRI (mean age, 67.3 [SD, 8.2] years; 40.4% women), 449 (67.0%) completed the follow-up MRI at a median of 3.97 years after randomization, after a median intervention period of 3.40 years. In the intensive treatment group, based on a robust linear mixed model, mean white matter lesion volume increased from 4.57 to 5.49 cm3 (difference, 0.92 cm3 [95% CI, 0.69 to 1.14]) vs an increase from 4.40 to 5.85 cm3 (difference, 1.45 cm3 [95% CI, 1.21 to 1.70]) in the standard treatment group (between-group difference in change, -0.54 cm3 [95% CI, -0.87 to -0.20]). Mean total brain volume decreased from 1134.5 to 1104.0 cm3 (difference, -30.6 cm3 [95% CI, -32.3 to -28.8]) in the intensive treatment group vs a decrease from 1134.0 to 1107.1 cm3 (difference, -26.9 cm3 [95% CI, 24.8 to 28.8]) in the standard treatment group (between-group difference in change, -3.7 cm3 [95% CI, -6.3 to -1.1]).Among hypertensive adults, targeting an SBP of less than 120 mm Hg, compared with less than 140 mm Hg, was significantly associated with a smaller increase in cerebral white matter lesion volume and a greater decrease in total brain volume, although the differences were small.ClinicalTrials.gov Identifier: NCT01206062.
0

MRI signatures of brain age and disease over the lifespan based on a deep brain network and 14 468 individuals worldwide

Vishnu Bashyam et al.May 2, 2020
Abstract Deep learning has emerged as a powerful approach to constructing imaging signatures of normal brain ageing as well as of various neuropathological processes associated with brain diseases. In particular, MRI-derived brain age has been used as a comprehensive biomarker of brain health that can identify both advanced and resilient ageing individuals via deviations from typical brain ageing. Imaging signatures of various brain diseases, including schizophrenia and Alzheimer’s disease, have also been identified using machine learning. Prior efforts to derive these indices have been hampered by the need for sophisticated and not easily reproducible processing steps, by insufficiently powered or diversified samples from which typical brain ageing trajectories were derived, and by limited reproducibility across populations and MRI scanners. Herein, we develop and test a sophisticated deep brain network (DeepBrainNet) using a large (n = 11 729) set of MRI scans from a highly diversified cohort spanning different studies, scanners, ages and geographic locations around the world. Tests using both cross-validation and a separate replication cohort of 2739 individuals indicate that DeepBrainNet obtains robust brain-age estimates from these diverse datasets without the need for specialized image data preparation and processing. Furthermore, we show evidence that moderately fit brain ageing models may provide brain age estimates that are most discriminant of individuals with pathologies. This is not unexpected as tightly-fitting brain age models naturally produce brain-age estimates that offer little information beyond age, and loosely fitting models may contain a lot of noise. Our results offer some experimental evidence against commonly pursued tightly-fitting models. We show that the moderately fitting brain age models obtain significantly higher differentiation compared to tightly-fitting models in two of the four disease groups tested. Critically, we demonstrate that leveraging DeepBrainNet, along with transfer learning, allows us to construct more accurate classifiers of several brain diseases, compared to directly training classifiers on patient versus healthy control datasets or using common imaging databases such as ImageNet. We, therefore, derive a domain-specific deep network likely to reduce the need for application-specific adaptation and tuning of generic deep learning networks. We made the DeepBrainNet model freely available to the community for MRI-based evaluation of brain health in the general population and over the lifespan.
11

Genetic, Clinical Underpinnings of Brain Change Along Two Neuroanatomical Dimensions of Clinically-defined Alzheimer’s Disease

Junhao Wen et al.Sep 19, 2022
Abstract Alzheimer’s disease (AD) is associated with heterogeneous atrophy patterns. We employed a semi-supervised clustering technique known as Surreal-GAN, through which we identified two dominant dimensions of brain atrophy in symptomatic mild cognitive impairment (MCI) and AD patients: the “diffuse-AD” (R1) dimension shows widespread brain atrophy, and the “MTL-AD” (R2) dimension displays focal medial temporal lobe (MTL) atrophy. Critically, only R2 was associated with widely known sporadic AD genetic risk factors (e.g., APOE ε4 ) in MCI and AD patients at baseline. We then independently detected the presence of the two dimensions in the early stages by deploying the trained model in the general population and two cognitively unimpaired cohorts of asymptomatic participants. In the general population, genome-wide association studies found 77 genes unrelated to APOE differentially associated with R1 and R2. Functional analyses revealed that these genes were overrepresented in differentially expressed gene sets in organs beyond the brain (R1 and R2), including the heart (R1) and the pituitary gland, muscle, and kidney (R2). These genes were enriched in biological pathways implicated in dendritic cells (R2), macrophage functions (R1), and cancer (R1 and R2). Several of them were “druggable genes” for cancer (R1), inflammation (R1), cardiovascular diseases (R1), and diseases of the nervous system (R2). The longitudinal progression showed that APOE ε4 , amyloid, and tau were associated with R2 at early asymptomatic stages, but this longitudinal association occurs only at late symptomatic stages in R1. Our findings deepen our understanding of the multifaceted pathogenesis of AD beyond the brain. In early asymptomatic stages, the two dimensions are associated with diverse pathological mechanisms, including cardiovascular diseases, inflammation, and hormonal dysfunction – driven by genes different from APOE – which may collectively contribute to the early pathogenesis of AD.
11
Citation11
0
Save
0

Harmonization of large multi-site imaging datasets: Application to 10,232 MRIs for the analysis of imaging patterns of structural brain change throughout the lifespan

Raymond Pomponio et al.Sep 26, 2019
Abstract As medical imaging enters its information era and presents rapidly increasing needs for big data analytics, robust pooling and harmonization of imaging data across diverse cohorts with varying acquisition protocols have become critical. We describe a comprehensive effort that merges and harmonizes a large-scale dataset of 10,232 structural brain MRI scans from participants without known neuropsychiatric disorder from 18 different studies that represent geographic diversity. We use this dataset and multi-atlas-based image processing methods to obtain a hierarchical partition of the brain from larger anatomical regions to individual cortical and deep structures and derive normative age trends of brain structure through the lifespan (3 to 96 years old). Critically, we present and validate a methodology for harmonizing this pooled dataset in the presence of nonlinear age trends. We provide a web-based visualization interface to generate and present the resulting age trends, enabling future studies of brain structure to compare their data with this normative reference of brain development and aging, and to examine deviations from normative ranges, potentially related to disease.
0

Towards cascading genetic risk in Alzheimer’s disease

André Altmann et al.May 30, 2024
Abstract Alzheimer’s disease typically progresses in stages, which have been defined by the presence of disease-specific biomarkers: amyloid (A), tau (T) and neurodegeneration (N). This progression of biomarkers has been condensed into the ATN framework, in which each of the biomarkers can be either positive (+) or negative (−). Over the past decades, genome-wide association studies have implicated ∼90 different loci involved with the development of late-onset Alzheimer’s disease. Here, we investigate whether genetic risk for Alzheimer’s disease contributes equally to the progression in different disease stages or whether it exhibits a stage-dependent effect. Amyloid (A) and tau (T) status was defined using a combination of available PET and CSF biomarkers in the Alzheimer’s Disease Neuroimaging Initiative cohort. In 312 participants with biomarker-confirmed A−T− status, we used Cox proportional hazards models to estimate the contribution of APOE and polygenic risk scores (beyond APOE) to convert to A+T− status (65 conversions). Furthermore, we repeated the analysis in 290 participants with A+T− status and investigated the genetic contribution to conversion to A+T+ (45 conversions). Both survival analyses were adjusted for age, sex and years of education. For progression from A−T− to A+T−, APOE-e4 burden showed a significant effect [hazard ratio (HR) = 2.88; 95% confidence interval (CI): 1.70–4.89; P &lt; 0.001], whereas polygenic risk did not (HR = 1.09; 95% CI: 0.84–1.42; P = 0.53). Conversely, for the transition from A+T− to A+T+, the contribution of APOE-e4 burden was reduced (HR = 1.62; 95% CI: 1.05–2.51; P = 0.031), whereas the polygenic risk showed an increased contribution (HR = 1.73; 95% CI: 1.27–2.36; P &lt; 0.001). The marginal APOE effect was driven by e4 homozygotes (HR = 2.58; 95% CI: 1.05–6.35; P = 0.039) as opposed to e4 heterozygotes (HR = 1.74; 95% CI: 0.87–3.49; P = 0.12). The genetic risk for late-onset Alzheimer’s disease unfolds in a disease stage-dependent fashion. A better understanding of the interplay between disease stage and genetic risk can lead to a more mechanistic understanding of the transition between ATN stages and a better understanding of the molecular processes leading to Alzheimer’s disease, in addition to opening therapeutic windows for targeted interventions.
1

Harmonizing Functional Connectivity Reduces Scanner Effects in Community Detection

Andrew Chen et al.Dec 6, 2021
Abstract Community detection on graphs constructed from functional magnetic resonance imaging (fMRI) data has led to important insights into brain functional organization. Large studies of brain community structure often include images acquired on multiple scanners across different studies. Differences in scanner can introduce variability into the downstream results, and these differences are often referred to as scanner effects. Such effects have been previously shown to significantly impact common network metrics. In this study, we identify scanner effects in data-driven community detection results and related network metrics. We assess a commonly employed harmonization method and propose new methodology for harmonizing functional connectivity that leverage existing knowledge about network structure as well as patterns of covariance in the data. Finally, we demonstrate that our new methods reduce scanner effects in community structure and network metrics. Our results highlight scanner effects in studies of brain functional organization and provide additional tools to address these unwanted effects. These findings and methods can be incorporated into future functional connectivity studies, potentially preventing spurious findings and improving reliability of results.
Load More