GE
Güray Erus
Author with expertise in Analysis of Brain Functional Connectivity Networks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
20
(85% Open Access)
Cited by:
3,103
h-index:
43
/
i10-index:
92
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Linked Sex Differences in Cognition and Functional Connectivity in Youth

Theodore Satterthwaite et al.Mar 18, 2014
Sex differences in human cognition are marked, but little is known regarding their neural origins. Here, in a sample of 674 human participants ages 9–22, we demonstrate that sex differences in cognitive profiles are related to multivariate patterns of resting-state functional connectivity MRI (rsfc-MRI). Males outperformed females on motor and spatial cognitive tasks; females were faster in tasks of emotion identification and nonverbal reasoning. Sex differences were also prominent in the rsfc-MRI data at multiple scales of analysis, with males displaying more between-module connectivity, while females demonstrated more within-module connectivity. Multivariate pattern analysis using support vector machines classified subject sex on the basis of their cognitive profile with 63% accuracy (P < 0.001), but was more accurate using functional connectivity data (71% accuracy; P < 0.001). Moreover, the degree to which a given participant's cognitive profile was “male” or “female” was significantly related to the masculinity or femininity of their pattern of brain connectivity (P = 2.3 × 10−7). This relationship was present even when considering males and female separately. Taken together, these results demonstrate for the first time that sex differences in patterns of cognition are in part represented on a neural level through divergent patterns of brain connectivity.
0

White matter hyperintensities and imaging patterns of brain ageing in the general population

Mohamad Habes et al.Feb 24, 2016
White matter hyperintensities are associated with increased risk of dementia and cognitive decline. The current study investigates the relationship between white matter hyperintensities burden and patterns of brain atrophy associated with brain ageing and Alzheimer’s disease in a large populatison-based sample ( n = 2367) encompassing a wide age range (20–90 years), from the Study of Health in Pomerania. We quantified white matter hyperintensities using automated segmentation and summarized atrophy patterns using machine learning methods resulting in two indices: the SPARE-BA index (capturing age-related brain atrophy), and the SPARE-AD index (previously developed to capture patterns of atrophy found in patients with Alzheimer’s disease). A characteristic pattern of age-related accumulation of white matter hyperintensities in both periventricular and deep white matter areas was found. Individuals with high white matter hyperintensities burden showed significantly ( P < 0.0001) lower SPARE-BA and higher SPARE-AD values compared to those with low white matter hyperintensities burden, indicating that the former had more patterns of atrophy in brain regions typically affected by ageing and Alzheimer’s disease dementia. To investigate a possibly causal role of white matter hyperintensities, structural equation modelling was used to quantify the effect of Framingham cardiovascular disease risk score and white matter hyperintensities burden on SPARE-BA, revealing a statistically significant ( P < 0.0001) causal relationship between them. Structural equation modelling showed that the age effect on SPARE-BA was mediated by white matter hyperintensities and cardiovascular risk score each explaining 10.4% and 21.6% of the variance, respectively. The direct age effect explained 70.2% of the SPARE-BA variance. Only white matter hyperintensities significantly mediated the age effect on SPARE-AD explaining 32.8% of the variance. The direct age effect explained 66.0% of the SPARE-AD variance. Multivariable regression showed significant relationship between white matter hyperintensities volume and hypertension ( P = 0.001), diabetes mellitus ( P = 0.023), smoking ( P = 0.002) and education level ( P = 0.003). The only significant association with cognitive tests was with the immediate recall of the California verbal and learning memory test. No significant association was present with the APOE genotype. These results support the hypothesis that white matter hyperintensities contribute to patterns of brain atrophy found in beyond-normal brain ageing in the general population. White matter hyperintensities also contribute to brain atrophy patterns in regions related to Alzheimer’s disease dementia, in agreement with their known additive role to the likelihood of dementia. Preventive strategies reducing the odds to develop cardiovascular disease and white matter hyperintensities could decrease the incidence or delay the onset of dementia. White matter hyperintensities (WMH) are associated with increased risk of cognitive decline. In a large population-based sample, Habes et al. reveal that WMH burden contributes to atrophy in regions typically affected by beyond-normal brain ageing and Alzheimer’s disease. Strategies aimed at preventing WMH development could delay the onset of dementia.
0

Harmonization of large MRI datasets for the analysis of brain imaging patterns throughout the lifespan

Raymond Pomponio et al.Dec 9, 2019
As medical imaging enters its information era and presents rapidly increasing needs for big data analytics, robust pooling and harmonization of imaging data across diverse cohorts with varying acquisition protocols have become critical. We describe a comprehensive effort that merges and harmonizes a large-scale dataset of 10,477 structural brain MRI scans from participants without a known neurological or psychiatric disorder from 18 different studies that represent geographic diversity. We use this dataset and multi-atlas-based image processing methods to obtain a hierarchical partition of the brain from larger anatomical regions to individual cortical and deep structures and derive age trends of brain structure through the lifespan (3–96 years old). Critically, we present and validate a methodology for harmonizing this pooled dataset in the presence of nonlinear age trends. We provide a web-based visualization interface to generate and present the resulting age trends, enabling future studies of brain structure to compare their data with this reference of brain development and aging, and to examine deviations from ranges, potentially related to disease.
0

Association of Intensive vs Standard Blood Pressure Control With Cerebral White Matter Lesions

Ilya Nasrallah et al.Aug 13, 2019
The effect of intensive blood pressure lowering on brain health remains uncertain.To evaluate the association of intensive blood pressure treatment with cerebral white matter lesion and brain volumes.A substudy of a multicenter randomized clinical trial of hypertensive adults 50 years or older without a history of diabetes or stroke at 27 sites in the United States. Randomization began on November 8, 2010. The overall trial was stopped early because of benefit for its primary outcome (a composite of cardiovascular events) and all-cause mortality on August 20, 2015. Brain magnetic resonance imaging (MRI) was performed on a subset of participants at baseline (n = 670) and at 4 years of follow-up (n = 449); final follow-up date was July 1, 2016.Participants were randomized to a systolic blood pressure (SBP) goal of either less than 120 mm Hg (intensive treatment, n = 355) or less than 140 mm Hg (standard treatment, n = 315).The primary outcome was change in total white matter lesion volume from baseline. Change in total brain volume was a secondary outcome.Among 670 recruited patients who had baseline MRI (mean age, 67.3 [SD, 8.2] years; 40.4% women), 449 (67.0%) completed the follow-up MRI at a median of 3.97 years after randomization, after a median intervention period of 3.40 years. In the intensive treatment group, based on a robust linear mixed model, mean white matter lesion volume increased from 4.57 to 5.49 cm3 (difference, 0.92 cm3 [95% CI, 0.69 to 1.14]) vs an increase from 4.40 to 5.85 cm3 (difference, 1.45 cm3 [95% CI, 1.21 to 1.70]) in the standard treatment group (between-group difference in change, -0.54 cm3 [95% CI, -0.87 to -0.20]). Mean total brain volume decreased from 1134.5 to 1104.0 cm3 (difference, -30.6 cm3 [95% CI, -32.3 to -28.8]) in the intensive treatment group vs a decrease from 1134.0 to 1107.1 cm3 (difference, -26.9 cm3 [95% CI, 24.8 to 28.8]) in the standard treatment group (between-group difference in change, -3.7 cm3 [95% CI, -6.3 to -1.1]).Among hypertensive adults, targeting an SBP of less than 120 mm Hg, compared with less than 140 mm Hg, was significantly associated with a smaller increase in cerebral white matter lesion volume and a greater decrease in total brain volume, although the differences were small.ClinicalTrials.gov Identifier: NCT01206062.
0

Mitigating head motion artifact in functional connectivity MRI

Rastko Ćirić et al.Nov 15, 2018
Participant motion during functional magnetic resonance image (fMRI) acquisition produces spurious signal fluctuations that can confound measures of functional connectivity. Without mitigation, motion artifact can bias statistical inferences about relationships between connectivity and individual differences. To counteract motion artifact, this protocol describes the implementation of a validated, high-performance denoising strategy that combines a set of model features, including physiological signals, motion estimates, and mathematical expansions, to target both widespread and focal effects of subject movement. This protocol can be used to reduce motion-related variance to near zero in studies of functional connectivity, providing up to a 100-fold improvement over minimal-processing approaches in large datasets. Image denoising requires 40 min to 4 h of computing per image, depending on model specifications and data dimensionality. The protocol additionally includes instructions for assessing the performance of a denoising strategy. Associated software implements all denoising and diagnostic procedures, using a combination of established image-processing libraries and the eXtensible Connectivity Pipeline (XCP) software. Ciric et al. describe a protocol for the removal of motion artifacts from functional MRI data. They introduce a software package that implements common denoising protocols and provides tools for assessing the efficacy of denoising.
0

Heterogeneous impact of motion on fundamental patterns of developmental changes in functional connectivity during youth

Theodore Satterthwaite et al.Jun 21, 2013
Several independent studies have demonstrated that small amounts of in-scanner motion systematically bias estimates of resting-state functional connectivity. This confound is of particular importance for studies of neurodevelopment in youth because motion is strongly related to subject age during this period. Critically, the effects of motion on connectivity mimic major findings in neurodevelopmental research, specifically an age-related strengthening of distant connections and weakening of short-range connections. Here, in a sample of 780 subjects ages 8–22, we re-evaluate patterns of change in functional connectivity during adolescent development after rigorously controlling for the confounding influences of motion at both the subject and group levels. We find that motion artifact inflates both overall estimates of age-related change as well as specific distance-related changes in connectivity. When motion is more fully accounted for, the prevalence of age-related change as well as the strength of distance-related effects is substantially reduced. However, age-related changes remain highly significant. In contrast, motion artifact tends to obscure age-related changes in connectivity associated with segregation of functional brain modules; improved preprocessing techniques allow greater sensitivity to detect increased within-module connectivity occurring with development. Finally, we show that subject's age can still be accurately estimated from the multivariate pattern of functional connectivity even while controlling for motion. Taken together, these results indicate that while motion artifact has a marked and heterogeneous impact on estimates of connectivity change during adolescence, functional connectivity remains a valuable phenotype for the study of neurodevelopment.
0

MRI signatures of brain age and disease over the lifespan based on a deep brain network and 14 468 individuals worldwide

Vishnu Bashyam et al.May 2, 2020
Abstract Deep learning has emerged as a powerful approach to constructing imaging signatures of normal brain ageing as well as of various neuropathological processes associated with brain diseases. In particular, MRI-derived brain age has been used as a comprehensive biomarker of brain health that can identify both advanced and resilient ageing individuals via deviations from typical brain ageing. Imaging signatures of various brain diseases, including schizophrenia and Alzheimer’s disease, have also been identified using machine learning. Prior efforts to derive these indices have been hampered by the need for sophisticated and not easily reproducible processing steps, by insufficiently powered or diversified samples from which typical brain ageing trajectories were derived, and by limited reproducibility across populations and MRI scanners. Herein, we develop and test a sophisticated deep brain network (DeepBrainNet) using a large (n = 11 729) set of MRI scans from a highly diversified cohort spanning different studies, scanners, ages and geographic locations around the world. Tests using both cross-validation and a separate replication cohort of 2739 individuals indicate that DeepBrainNet obtains robust brain-age estimates from these diverse datasets without the need for specialized image data preparation and processing. Furthermore, we show evidence that moderately fit brain ageing models may provide brain age estimates that are most discriminant of individuals with pathologies. This is not unexpected as tightly-fitting brain age models naturally produce brain-age estimates that offer little information beyond age, and loosely fitting models may contain a lot of noise. Our results offer some experimental evidence against commonly pursued tightly-fitting models. We show that the moderately fitting brain age models obtain significantly higher differentiation compared to tightly-fitting models in two of the four disease groups tested. Critically, we demonstrate that leveraging DeepBrainNet, along with transfer learning, allows us to construct more accurate classifiers of several brain diseases, compared to directly training classifiers on patient versus healthy control datasets or using common imaging databases such as ImageNet. We, therefore, derive a domain-specific deep network likely to reduce the need for application-specific adaptation and tuning of generic deep learning networks. We made the DeepBrainNet model freely available to the community for MRI-based evaluation of brain health in the general population and over the lifespan.
0

MUSE: MUlti-atlas region Segmentation utilizing Ensembles of registration algorithms and parameters, and locally optimal atlas selection

Jimit Doshi et al.Dec 12, 2015
Atlas-based automated anatomical labeling is a fundamental tool in medical image segmentation, as it defines regions of interest for subsequent analysis of structural and functional image data. The extensive investigation of multi-atlas warping and fusion techniques over the past 5 or more years has clearly demonstrated the advantages of consensus-based segmentation. However, the common approach is to use multiple atlases with a single registration method and parameter set, which is not necessarily optimal for every individual scan, anatomical region, and problem/data-type. Different registration criteria and parameter sets yield different solutions, each providing complementary information. Herein, we present a consensus labeling framework that generates a broad ensemble of labeled atlases in target image space via the use of several warping algorithms, regularization parameters, and atlases. The label fusion integrates two complementary sources of information: a local similarity ranking to select locally optimal atlases and a boundary modulation term to refine the segmentation consistently with the target image's intensity profile. The ensemble approach consistently outperforms segmentations using individual warping methods alone, achieving high accuracy on several benchmark datasets. The MUSE methodology has been used for processing thousands of scans from various datasets, producing robust and consistent results. MUSE is publicly available both as a downloadable software package, and as an application that can be run on the CBICA Image Processing Portal (https://ipp.cbica.upenn.edu), a web based platform for remote processing of medical images.
Load More