SI
Shin‐ichiro Imai
Author with expertise in Role of Sirtuins in Health and Aging
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
18
(94% Open Access)
Cited by:
15,613
h-index:
53
/
i10-index:
90
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The NAD Biosynthesis Pathway Mediated by Nicotinamide Phosphoribosyltransferase Regulates Sir2 Activity in Mammalian Cells

Javier Revollo et al.Sep 21, 2004
Recent studies have revealed new roles for NAD and its derivatives in transcriptional regulation. The evolutionarily conserved Sir2 protein family requires NAD for its deacetylase activity and regulates a variety of biological processes, such as stress response, differentiation, metabolism, and aging. Despite its absolute requirement for NAD, the regulation of Sir2 function by NAD biosynthesis pathways is poorly understood in mammals. In this study, we determined the kinetics of the NAD biosynthesis mediated by nicotinamide phosphoribosyltransferase (Nampt) and nicotinamide/nicotinic acid mononucleotide adenylyltransferase (Nmnat), and we examined its effects on the transcriptional regulatory function of the mouse Sir2 ortholog, Sir2α, in mouse fibroblasts. We found that Nampt was the ratelimiting component in this mammalian NAD biosynthesis pathway. Increased dosage of Nampt, but not Nmnat, increased the total cellular NAD level and enhanced the transcriptional regulatory activity of the catalytic domain of Sir2α recruited onto a reporter gene in mouse fibroblasts. Gene expression profiling with oligonucleotide microarrays also demonstrated a significant correlation between the expression profiles of Nampt- and Sir2α-overexpressing cells. These findings suggest that NAD biosynthesis mediated by Nampt regulates the function of Sir2α and thereby plays an important role in controlling various biological events in mammals.
0

Long-Term Administration of Nicotinamide Mononucleotide Mitigates Age-Associated Physiological Decline in Mice

Kathryn Mills et al.Oct 27, 2016
NAD+ availability decreases with age and in certain disease conditions. Nicotinamide mononucleotide (NMN), a key NAD+ intermediate, has been shown to enhance NAD+ biosynthesis and ameliorate various pathologies in mouse disease models. In this study, we conducted a 12-month-long NMN administration to regular chow-fed wild-type C57BL/6N mice during their normal aging. Orally administered NMN was quickly utilized to synthesize NAD+ in tissues. Remarkably, NMN effectively mitigates age-associated physiological decline in mice. Without any obvious toxicity or deleterious effects, NMN suppressed age-associated body weight gain, enhanced energy metabolism, promoted physical activity, improved insulin sensitivity and plasma lipid profile, and ameliorated eye function and other pathophysiologies. Consistent with these phenotypes, NMN prevented age-associated gene expression changes in key metabolic organs and enhanced mitochondrial oxidative metabolism and mitonuclear protein imbalance in skeletal muscle. These effects of NMN highlight the preventive and therapeutic potential of NAD+ intermediates as effective anti-aging interventions in humans.
Load More