PP
Paul Paik
Author with expertise in Advancements in Lung Cancer Research
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
22
(86% Open Access)
Cited by:
8,526
h-index:
43
/
i10-index:
80
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

OncoKB: A Precision Oncology Knowledge Base

Debyani Chakravarty et al.Jul 7, 2017
With prospective clinical sequencing of tumors emerging as a mainstay in cancer care, there is an urgent need for a clinical support tool that distills the clinical implications associated with specific mutation events into a standardized and easily interpretable format. To this end, we developed OncoKB, an expert-guided precision oncology knowledge base.OncoKB annotates the biological and oncogenic effect and the prognostic and predictive significance of somatic molecular alterations. Potential treatment implications are stratified by the level of evidence that a specific molecular alteration is predictive of drug response based on US Food and Drug Administration (FDA) labeling, National Comprehensive Cancer Network (NCCN) guidelines, disease-focused expert group recommendations and the scientific literature.To date, over 3000 unique mutations, fusions, and copy number alterations in 418 cancer-associated genes have been annotated. To test the utility of OncoKB, we annotated all genomic events in 5983 primary tumor samples in 19 cancer types. Forty-one percent of samples harbored at least one potentially actionable alteration, of which 7.5% were predictive of clinical benefit from a standard treatment. OncoKB annotations are available through a public web resource (http://oncokb.org/) and are also incorporated into the cBioPortal for Cancer Genomics to facilitate the interpretation of genomic alterations by physicians and researchers.OncoKB, a comprehensive and curated precision oncology knowledge base, offers oncologists detailed, evidence-based information about individual somatic mutations and structural alterations present in patient tumors with the goal of supporting optimal treatment decisions.
0
Citation1,968
0
Save
0

Clinical Characteristics of Patients With Lung Adenocarcinomas Harboring BRAF Mutations

Paul Paik et al.Apr 12, 2011
Purpose BRAF mutations occur in non–small-cell lung cancer. Therapies targeting BRAF mutant tumors have recently been identified. We undertook this study to determine the clinical characteristics of patients with lung adenocarcinomas harboring BRAF mutations. Patients and Methods We reviewed data from consecutive patients with lung adenocarcinoma whose tumors underwent BRAF, EGFR, and KRAS mutation testing as well as fluorescence in situ hybridization for ALK rearrangements. Patient characteristics including age, sex, race, performance status, smoking history, stage, treatment history, and overall survival were collected. Results Among 697 patients with lung adenocarcinoma, BRAF mutations were present in 18 patients (3%; 95% CI, 2% to 4%). The BRAF mutations identified were V600E (50%), G469A (39%), and D594G (11%). Mutations in EGFR were present in 24%, KRAS in 25%, and ALK translocations in 6%. In contrast to patients with EGFR mutations and ALK rearrangements who were mostly never smokers, all patients with BRAF mutations were current or former smokers (P < .001). The median overall survival of advanced-stage patients with BRAF mutations was not reached. In comparison, the median overall survival of patients with EGFR mutations was 37 months (P = .73), with KRAS mutations was 18 months (P = .12), and with ALK rearrangements was not reached (P = .64). Conclusion BRAF mutations occur in 3% of patients with lung adenocarcinoma and occur more commonly in current and former smokers. The incidence of BRAF mutations other than V600E is significantly higher in lung cancer than in melanoma.
0

Tepotinib in Non–Small-Cell Lung Cancer with MET Exon 14 Skipping Mutations

Paul Paik et al.May 28, 2020
A splice-site mutation that results in a loss of transcription of exon 14 in the oncogenic driver MET occurs in 3 to 4% of patients with non-small-cell lung cancer (NSCLC). We evaluated the efficacy and safety of tepotinib, a highly selective MET inhibitor, in this patient population.In this open-label, phase 2 study, we administered tepotinib (at a dose of 500 mg) once daily in patients with advanced or metastatic NSCLC with a confirmed MET exon 14 skipping mutation. The primary end point was the objective response by independent review among patients who had undergone at least 9 months of follow-up. The response was also analyzed according to whether the presence of a MET exon 14 skipping mutation was detected on liquid biopsy or tissue biopsy.As of January 1, 2020, a total of 152 patients had received tepotinib, and 99 patients had been followed for at least 9 months. The response rate by independent review was 46% (95% confidence interval [CI], 36 to 57), with a median duration of response of 11.1 months (95% CI, 7.2 to could not be estimated) in the combined-biopsy group. The response rate was 48% (95% CI, 36 to 61) among 66 patients in the liquid-biopsy group and 50% (95% CI, 37 to 63) among 60 patients in the tissue-biopsy group; 27 patients had positive results according to both methods. The investigator-assessed response rate was 56% (95% CI, 45 to 66) and was similar regardless of the previous therapy received for advanced or metastatic disease. Adverse events of grade 3 or higher that were considered by investigators to be related to tepotinib therapy were reported in 28% of the patients, including peripheral edema in 7%. Adverse events led to permanent discontinuation of tepotinib in 11% of the patients. A molecular response, as measured in circulating free DNA, was observed in 67% of the patients with matched liquid-biopsy samples at baseline and during treatment.Among patients with advanced NSCLC with a confirmed MET exon 14 skipping mutation, the use of tepotinib was associated with a partial response in approximately half the patients. Peripheral edema was the main toxic effect of grade 3 or higher. (Funded by Merck [Darmstadt, Germany]; VISION ClinicalTrials.gov number, NCT02864992.).
0
Citation599
0
Save
0

Molecular Epidemiology of EGFR and KRAS Mutations in 3,026 Lung Adenocarcinomas: Higher Susceptibility of Women to Smoking-Related KRAS-Mutant Cancers

Snjezana Doğan et al.Sep 30, 2012
Abstract Purpose: The molecular epidemiology of most EGFR and KRAS mutations in lung cancer remains unclear. Experimental Design: We genotyped 3,026 lung adenocarcinomas for the major EGFR (exon 19 deletions and L858R) and KRAS (G12, G13) mutations and examined correlations with demographic, clinical, and smoking history data. Results: EGFR mutations were found in 43% of never smokers and in 11% of smokers. KRAS mutations occurred in 34% of smokers and in 6% of never smokers. In patients with smoking histories up to 10 pack-years, EGFR predominated over KRAS. Among former smokers with lung cancer, multivariate analysis showed that, independent of pack-years, increasing smoking-free years raise the likelihood of EGFR mutation. Never smokers were more likely than smokers to have KRAS G &gt; A transition mutation (mostly G12D; 58% vs. 20%, P = 0.0001). KRAS G12C, the most common G &gt; T transversion mutation in smokers, was more frequent in women (P = 0.007) and these women were younger than men with the same mutation (median 65 vs. 69, P = 0.0008) and had smoked less. Conclusions: The distinct types of KRAS mutations in smokers versus never smokers suggest that most KRAS-mutant lung cancers in never smokers are not due to second-hand smoke exposure. The higher frequency of KRAS G12C in women, their younger age, and lesser smoking history together support a heightened susceptibility to tobacco carcinogens. Clin Cancer Res; 18(22); 6169–77. ©2012 AACR.
0
Citation537
0
Save
0

Prospective Comprehensive Molecular Characterization of Lung Adenocarcinomas for Efficient Patient Matching to Approved and Emerging Therapies

Emmet Jordan et al.Mar 24, 2017
Abstract Tumor genetic testing is standard of care for patients with advanced lung adenocarcinoma, but the fraction of patients who derive clinical benefit remains undefined. Here, we report the experience of 860 patients with metastatic lung adenocarcinoma analyzed prospectively for mutations in &gt;300 cancer-associated genes. Potentially actionable genetic events were stratified into one of four levels based upon published clinical or laboratory evidence that the mutation in question confers increased sensitivity to standard or investigational therapies. Overall, 37.1% (319/860) of patients received a matched therapy guided by their tumor molecular profile. Excluding alterations associated with standard-of-care therapy, 14.4% (69/478) received matched therapy, with a clinical benefit of 52%. Use of matched therapy was strongly influenced by the level of preexistent clinical evidence that the mutation identified predicts for drug response. Analysis of genes mutated significantly more often in tumors without known actionable mutations nominated STK11 and KEAP1 as possible targetable mitogenic drivers. Significance: An increasing number of therapies that target molecular alterations required for tumor maintenance and progression have demonstrated clinical activity in patients with lung adenocarcinoma. The data reported here suggest that broader, early testing for molecular alterations that have not yet been recognized as standard-of-care predictive biomarkers of drug response could accelerate the development of targeted agents for rare mutational events and could result in improved clinical outcomes. Cancer Discov; 7(6); 596–609. ©2017 AACR. See related commentary by Liu et al., p. 555. This article is highlighted in the In This Issue feature, p. 539
0
Citation537
0
Save
0

Response to MET Inhibitors in Patients with Stage IV Lung Adenocarcinomas Harboring MET Mutations Causing Exon 14 Skipping

Paul Paik et al.May 14, 2015
Abstract Mutations in the MET exon 14 RNA splice acceptor and donor sites, which lead to exon skipping, deletion of the juxtamembrane domain containing the CBL E3-ubiquitin ligase-binding site, and decreased turnover of the resultant aberrant MET protein, were previously reported to be oncogenic in preclinical models. We now report responses to the MET inhibitors crizotinib and cabozantinib in four patients with stage IV lung adenocarcinomas harboring mutations leading to MET exon 14 skipping, highlighting a new therapeutic strategy for the 4% of lung adenocarcinoma patients whose tumors harbor this previously underappreciated genetic alteration. Significance: Oncogenic mutations in the MET exon 14 splice sites that cause exon 14 skipping occur in 4% of lung adenocarcinomas. We report responses to the MET inhibitors crizotinib and cabozantinib in patients with lung adenocarcinomas harboring MET exon 14 splice site mutations, identifying a new potential therapeutic target in this disease. Cancer Discov; 5(8); 842–9. ©2015 AACR. See related commentary by Ma, p. 802. See related article by Frampton et al., p. 850. This article is highlighted in the In This Issue feature, p. 783
0
Citation535
0
Save
0

Prevalence, Clinicopathologic Associations, and Molecular Spectrum of ERBB2 (HER2) Tyrosine Kinase Mutations in Lung Adenocarcinomas

Maria Arcila et al.Jul 4, 2012
Activating mutations in the tyrosine kinase domain of HER2 (ERBB2) have been described in a subset of lung adenocarcinomas (ADCs) and are mutually exclusive with EGFR and KRAS mutations. The prevalence, clinicopathologic characteristics, prognostic implications, and molecular heterogeneity of HER2-mutated lung ADCs are not well established in U.S. patients.Lung ADC samples (N = 1,478) were first screened for mutations in EGFR (exons 19 and 21) and KRAS (exon 2), and negative cases were then assessed for HER2 mutations (exons 19-20) using a sizing assay and mass spectrometry. Testing for additional recurrent point mutations in EGFR, KRAS, BRAF, NRAS, PIK3CA, MEK1, and AKT was conducted by mass spectrometry. ALK rearrangements and HER2 amplification were assessed by FISH.We identified 25 cases with HER2 mutations, representing 6% of EGFR/KRAS/ALK-negative specimens. Small insertions in exon 20 accounted for 96% (24/25) of the cases. Compared with insertions in EGFR exon 20, there was less variability, with 83% (20/24) being a 12 bp insertion causing duplication of amino acids YVMA at codon 775. Morphologically, 92% (23/25) were moderately or poorly differentiated ADC. HER2 mutation was not associated with concurrent HER2 amplification in 11 cases tested for both. HER2 mutations were more frequent among never-smokers (P < 0.0001) but there were no associations with sex, race, or stage.HER2 mutations identify a distinct subset of lung ADCs. Given the high prevalence of lung cancer worldwide and the availability of standard and investigational therapies targeting HER2, routine clinical genotyping of lung ADC should include HER2.
0
Citation424
0
Save
0

Next-Generation Sequencing of Pulmonary Large Cell Neuroendocrine Carcinoma Reveals Small Cell Carcinoma–like and Non–Small Cell Carcinoma–like Subsets

Natasha Rekhtman et al.Mar 10, 2016
Abstract Purpose: Pulmonary large cell neuroendocrine carcinoma (LCNEC) is a highly aggressive neoplasm, whose biologic relationship to small cell lung carcinoma (SCLC) versus non-SCLC (NSCLC) remains unclear, contributing to uncertainty regarding optimal clinical management. To clarify these relationships, we analyzed genomic alterations in LCNEC compared with other major lung carcinoma types. Experimental Design: LCNEC (n = 45) tumor/normal pairs underwent targeted next-generation sequencing of 241 cancer genes by Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT) platform and comprehensive histologic, immunohistochemical, and clinical analysis. Genomic data were compared with MSK-IMPACT analysis of other lung carcinoma histologies (n = 242). Results: Commonly altered genes in LCNEC included TP53 (78%), RB1 (38%), STK11 (33%), KEAP1 (31%), and KRAS (22%). Genomic profiles segregated LCNEC into 2 major and 1 minor subsets: SCLC-like (n = 18), characterized by TP53+RB1 co-mutation/loss and other SCLC-type alterations, including MYCL amplification; NSCLC-like (n = 25), characterized by the lack of coaltered TP53+RB1 and nearly universal occurrence of NSCLC-type mutations (STK11, KRAS, and KEAP1); and carcinoid-like (n = 2), characterized by MEN1 mutations and low mutation burden. SCLC-like and NSCLC-like subsets revealed several clinicopathologic differences, including higher proliferative activity in SCLC-like tumors (P &lt; 0.0001) and exclusive adenocarcinoma-type differentiation marker expression in NSCLC-like tumors (P = 0.005). While exhibiting predominant similarity with lung adenocarcinoma, NSCLC-like LCNEC harbored several distinctive genomic alterations, including more frequent mutations in NOTCH family genes (28%), implicated as key regulators of neuroendocrine differentiation. Conclusions: LCNEC is a biologically heterogeneous group of tumors, comprising distinct subsets with genomic signatures of SCLC, NSCLC (predominantly adenocarcinoma), and rarely, highly proliferative carcinoids. Recognition of these subsets may inform the classification and management of LCNEC patients. Clin Cancer Res; 22(14); 3618–29. ©2016 AACR.
0
Citation375
0
Save
0

Clarifying the Spectrum of Driver Oncogene Mutations in Biomarker-Verified Squamous Carcinoma of Lung: Lack of EGFR/KRAS and Presence of PIK3CA/AKT1 Mutations

Natasha Rekhtman et al.Jan 7, 2012
There is persistent controversy as to whether EGFR and KRAS mutations occur in pulmonary squamous cell carcinoma (SQCC). We hypothesized that the reported variability may reflect difficulties in the pathologic distinction of true SQCC from adenosquamous carcinoma (AD-SQC) and poorly differentiated adenocarcinoma due to incomplete sampling or morphologic overlap. The recent development of a robust immunohistochemical approach for distinguishing squamous versus glandular differentiation provides an opportunity to reassess EGFR/KRAS and other targetable kinase mutation frequencies in a pathologically homogeneous series of SQCC.Ninety-five resected SQCCs, verified by immunohistochemistry as ΔNp63(+)/TTF-1(-), were tested for activating mutations in EGFR, KRAS, BRAF, PIK3CA, NRAS, AKT1, ERBB2/HER2, and MAP2K1/MEK1. In addition, all tissue samples from rare patients with the diagnosis of EGFR/KRAS-mutant "SQCC" encountered during 5 years of routine clinical genotyping were reassessed pathologically.The screen of 95 biomarker-verified SQCCs revealed no EGFR/KRAS [0%; 95% confidence interval (CI), 0%-3.8%], four PIK3CA (4%; 95% CI, 1%-10%), and one AKT1 (1%; 95% CI, 0%-5.7%) mutations. Detailed morphologic and immunohistochemical reevaluation of EGFR/KRAS-mutant "SQCC" identified during clinical genotyping (n = 16) resulted in reclassification of 10 (63%) cases as AD-SQC and five (31%) cases as poorly differentiated adenocarcinoma morphologically mimicking SQCC (i.e., adenocarcinoma with "squamoid" morphology). One (6%) case had no follow-up.Our findings suggest that EGFR/KRAS mutations do not occur in pure pulmonary SQCC, and occasional detection of these mutations in samples diagnosed as "SQCC" is due to challenges with the diagnosis of AD-SQC and adenocarcinoma, which can be largely resolved by comprehensive pathologic assessment incorporating immunohistochemical biomarkers.
0
Citation349
0
Save
Load More