NK
N. Kaplan
Author with expertise in Regulation of Chromatin Structure and Function
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
15
(73% Open Access)
Cited by:
4,185
h-index:
31
/
i10-index:
71
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The DNA-encoded nucleosome organization of a eukaryotic genome

N. Kaplan et al.Dec 17, 2008
Nucleosome organization is critical for gene regulation. In living cells this organization is determined by multiple factors, including the action of chromatin remodellers, competition with site-specific DNA-binding proteins, and the DNA sequence preferences of the nucleosomes themselves. However, it has been difficult to estimate the relative importance of each of these mechanisms in vivo, because in vivo nucleosome maps reflect the combined action of all influencing factors. Here we determine the importance of nucleosome DNA sequence preferences experimentally by measuring the genome-wide occupancy of nucleosomes assembled on purified yeast genomic DNA. The resulting map, in which nucleosome occupancy is governed only by the intrinsic sequence preferences of nucleosomes, is similar to in vivo nucleosome maps generated in three different growth conditions. In vitro, nucleosome depletion is evident at many transcription factor binding sites and around gene start and end sites, indicating that nucleosome depletion at these sites in vivo is partly encoded in the genome. We confirm these results with a micrococcal nuclease-independent experiment that measures the relative affinity of nucleosomes for approximately 40,000 double-stranded 150-base-pair oligonucleotides. Using our in vitro data, we devise a computational model of nucleosome sequence preferences that is significantly correlated with in vivo nucleosome occupancy in Caenorhabditis elegans. Our results indicate that the intrinsic DNA sequence preferences of nucleosomes have a central role in determining the organization of nucleosomes in vivo.
0
Citation1,166
0
Save
0

Distinct Modes of Regulation by Chromatin Encoded through Nucleosome Positioning Signals

Yair Field et al.Nov 6, 2008
The detailed positions of nucleosomes profoundly impact gene regulation and are partly encoded by the genomic DNA sequence. However, less is known about the functional consequences of this encoding. Here, we address this question using a genome-wide map of ∼380,000 yeast nucleosomes that we sequenced in their entirety. Utilizing the high resolution of our map, we refine our understanding of how nucleosome organizations are encoded by the DNA sequence and demonstrate that the genomic sequence is highly predictive of the in vivo nucleosome organization, even across new nucleosome-bound sequences that we isolated from fly and human. We find that Poly(dA:dT) tracts are an important component of these nucleosome positioning signals and that their nucleosome-disfavoring action results in large nucleosome depletion over them and over their flanking regions and enhances the accessibility of transcription factors to their cognate sites. Our results suggest that the yeast genome may utilize these nucleosome positioning signals to regulate gene expression with different transcriptional noise and activation kinetics and DNA replication with different origin efficiency. These distinct functions may be achieved by encoding both relatively closed (nucleosome-covered) chromatin organizations over some factor binding sites, where factors must compete with nucleosomes for DNA access, and relatively open (nucleosome-depleted) organizations over other factor sites, where factors bind without competition.
0
Citation450
0
Save
0

Structural organization of the inactive X chromosome in the mouse

Luca Giorgetti et al.Jul 1, 2016
An in-depth analysis of the structure, chromatin accessibility and expression status of the mouse inactive X (Xi) chromosome provides insights into the regulation of Xi chromosome structure, its dependence on the macrosatellite DXZ4 region, the Xist non-coding RNA, as well as the basis for topologically associating domain (TAD) formation on the Xi. During female development, X-chromosome inactivation is triggered by upregulation of the non-coding Xist RNA from one of the two X chromosomes. Chromosome conformation capture approaches have shown a loss of local structure on the inactive X (Xi) and formation of large mega-domains, separated by a region containing the DXZ4 macrosatellite. These authors investigate the structure, chromatin accessibility and expression status of the mouse Xi using allele-specific Hi-C, ATAC–seq and RNA–seq in embryonic stem cells and neural progenitor cells (NPCs). The Xi in NPCs lacks topologically associating domains (TADs) except around genes that escape X-chromosome inactivation, suggesting that TAD formation is driven by gene activity. The DXZ4-containing region and Xist shape the mega-domain structure of the Xi. X-chromosome inactivation (XCI) involves major reorganization of the X chromosome as it becomes silent and heterochromatic. During female mammalian development, XCI is triggered by upregulation of the non-coding Xist RNA from one of the two X chromosomes. Xist coats the chromosome in cis and induces silencing of almost all genes via its A-repeat region1,2, although some genes (constitutive escapees) avoid silencing in most cell types, and others (facultative escapees) escape XCI only in specific contexts3. A role for Xist in organizing the inactive X (Xi) chromosome has been proposed4,5,6. Recent chromosome conformation capture approaches have revealed global loss of local structure on the Xi chromosome and formation of large mega-domains, separated by a region containing the DXZ4 macrosatellite7,8,9,10. However, the molecular architecture of the Xi chromosome, in both the silent and expressed regions, remains unclear. Here we investigate the structure, chromatin accessibility and expression status of the mouse Xi chromosome in highly polymorphic clonal neural progenitors (NPCs) and embryonic stem cells. We demonstrate a crucial role for Xist and the DXZ4-containing boundary in shaping Xi chromosome structure using allele-specific genome-wide chromosome conformation capture (Hi-C) analysis, an assay for transposase-accessible chromatin with high throughput sequencing (ATAC–seq) and RNA sequencing. Deletion of the boundary disrupts mega-domain formation, and induction of Xist RNA initiates formation of the boundary and the loss of DNA accessibility. We also show that in NPCs, the Xi chromosome lacks active/inactive compartments and topologically associating domains (TADs), except around genes that escape XCI. Escapee gene clusters display TAD-like structures and retain DNA accessibility at promoter-proximal and CTCF-binding sites. Furthermore, altered patterns of facultative escape genes in different neural progenitor clones are associated with the presence of different TAD-like structures after XCI. These findings suggest a key role for transcription and CTCF in the formation of TADs in the context of the Xi chromosome in neural progenitors.
0
Citation397
0
Save
0

Study of mitotic chromatin supports a model of bookmarking by histone modifications and reveals nucleosome deposition patterns

Elisheva Javasky et al.Dec 12, 2017
Abstract Mitosis encompasses key molecular changes including chromatin condensation, nuclear envelope breakdown, and reduced transcription levels. Immediately after mitosis, the interphase chromatin structure is reestablished and transcription resumes. The reestablishment of the interphase chromatin is probably achieved by ‘bookmarking’, i.e. , the retention of at least partial information during mitosis. Yet, while recent studies demonstrate that chromatin accessibility is generally preserved during mitosis and is only locally modulated, the exact details of the bookmarking process and its components are still unclear. To gain a deeper understanding of the mitotic bookmarking process, we merged proteomics, immunofluorescence, and ChIP-seq approaches to study the mitotic and interphase genomic organization of human cells. We focused on key histone modifications and employed HeLa-S3 cells as a model system. Generally, we observed a global concordance between the genomic organization of histone modifications in interphase and mitosis, yet the abundance of the two types of modifications we investigated was different. Whereas histone methylation patterns remain highly similar, histone acetylation patterns show a general reduction while maintaining their genomic organization. These results demonstrate that the epigenomic landscape can serve as a major component of the mitotic bookmarking process. Next, to further investigate mitosis-associated chromatin changes, we followed up on previous studies that showed that nucleosome depleted regions (NDRs) become occupied by a nucleosome during mitosis. Surprisingly, we observed that the nucleosome introduced into the NDR during mitosis encompasses a distinctive set of histone modifications, differentiating it from the surrounding nucleosomes. We show that the nucleosomes near the NDR appear to both shift into the NDR during mitosis and adopt a unique modification pattern. HDAC inhibition by the small molecule TSA reverts this pattern. These results provide evidence for a mitotic deposition and change in the modifications of the nucleosomes surrounding the NDR. Altogether, by merging multiple approaches, our study provides evidence to support a model where mitotic bookmarking is achieved by histone modifications and uncovers new insights into the deposition of nucleosomes during mitosis.
0
Citation3
0
Save
11

Recruitment of transcriptional effectors by Cas9 creates cis regulatory elements and demonstrates distance-dependent transcriptional regulation

Jubran Boulos et al.Feb 3, 2022
Abstract It is essential to regulate the expression of genes, such as those encoding the proteins of the cardiac sarcomere. This regulation is often mediated by cis regulatory elements termed enhancers and repressors that recruit transcription factors to gene-distal sites. However, the relationship between transcription factors recruitment to gene-distant sites and the regulation of gene expression is not fully understood. Specifically, it is unclear if such recruitment to any genomic site is sufficient to form an enhancer or repressor at the site, and what is the relationship between the cis regulatory element’s position and its ability to control the transcription of distant genes. Using dead Cas9 to recruit either viral or endogenous transcription factor activation domains, we demonstrate that targeting ‘naïve’ genomic sites lacking open chromatin or active enhancer marks is sufficient to alter the chromatin signature of the target site, the distant gene promoter, and significantly induce the distant gene expression, even across chromatin insulating loci. The magnitude of induction is affected by the distance between the activation site and the cognate gene in a non-linear manner. Dead Cas9 mediated recruitment of repression domains behave similarly to activation in that targeting of non-regulatory regions could repress gene expression with a nonlinear distance dependence and across chromatin insulating loci. These findings expand the models of enhancer generation and function by showing that an arbitrary genomic site can become a regulatory element and interact epigenetically and transcriptionally with a distant promoter. They also provide new fundamental insights into the rules governing gene expression.
11
Citation3
0
Save
32

Hypothesis-driven probabilistic modelling enables a principled perspective of genomic compartments

Hagai Kariti et al.Oct 5, 2022
Abstract The Hi-C method has revolutionized the study of genome organization, yet interpretation of Hi-C interaction frequency maps remains a major challenge. Genomic compartments are a checkered Hi-C interaction pattern suggested to represent the partitioning of the genome into two self-interacting states associated with active and inactive chromatin. Based on a few elementary mechanistic assumptions, we derive a generative probabilistic model of genomic compartments, called deGeco. Testing our model, we find it can explain observed Hi-C interaction maps in a highly robust manner, allowing accurate inference of interaction probability maps from extremely sparse data without any training of parameters. Taking advantage of the interpretability of the model parameters, we then test hypotheses regarding the nature of genomic compartments. We find clear evidence of multiple states, and that these states self-interact with different affinities. We also find that the interaction rules of chromatin states differ considerably within and between chromosomes. Inspecting the molecular underpinnings of a four-state model, we show that a simple classifier can use histone marks to predict the underlying states with 87% accuracy. Finally, we observe instances of mixed-state loci and analyze these loci in single-cell Hi-C maps, finding that mixing of states occurs mainly at the population level.
32
Citation2
0
Save
0

DNA-guided establishment of canonical nucleosome patterns in a eukaryotic genome

Leslie Beh et al.Dec 26, 2014
A conserved hallmark of eukaryotic chromatin architecture is the distinctive array of well-positioned nucleosomes downstream of transcription start sites (TSS). Recent studies indicate that trans-acting factors establish this stereotypical array. Here, we present the first genome-wide in vitro and in vivo nucleosome maps for the ciliate Tetrahymena thermophila. In contrast with previous studies in yeast, we find that the stereotypical nucleosome array is preserved in the in vitro reconstituted map, which is governed only by the DNA sequence preferences of nucleosomes. Remarkably, this average in vitro pattern arises from the presence of subsets of nucleosomes, rather than the whole array, in individual Tetrahymena genes. Variation in GC content contributes to the positioning of these sequence-directed nucleosomes, and affects codon usage and amino acid composition in genes. We propose that these ‘seed’ nucleosomes may aid the AT-rich Tetrahymena genome – which is intrinsically unfavorable for nucleosome formation – in establishing nucleosome arrays in vivo in concert with trans-acting factors, while minimizing changes to the coding sequences they are embedded within.
Load More