CK
Cailey Kerley
Author with expertise in Diffusion Magnetic Resonance Imaging
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
23
h-index:
7
/
i10-index:
5
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
54

Pandora: 4-D white matter bundle population-based atlases derived from diffusion MRI fiber tractography

Colin Hansen et al.Jun 13, 2020
Abstract Brain atlases have proven to be valuable neuroscience tools for localizing regions of interest and performing statistical inferences on populations. Although many human brain atlases exist, most do not contain information about white matter structures, often neglecting them completely or labelling all white matter as a single homogenous substrate. While few white matter atlases do exist based on diffusion MRI fiber tractography, they are often limited to descriptions of white matter as spatially separate “regions” rather than as white matter “bundles” or fascicles, which are well-known to overlap throughout the brain. Additional limitations include small sample sizes, few white matter pathways, and the use of outdated diffusion models and techniques. Here, we present a new population-based collection of white matter atlases represented in both volumetric and surface coordinates in a standard space. These atlases are based on 2443 subjects, and include 216 white matter bundles derived from 6 different state-of-the-art tractography techniques. This atlas is freely available and will be a useful resource for parcellation and segmentation.
1

MASiVar: Multisite, Multiscanner, and Multisubject Acquisitions for Studying Variability in Diffusion Weighted Magnetic Resonance Imaging

Leon Cai et al.Dec 3, 2020
ABSTRACT Purpose Diffusion weighted imaging (DWI) allows investigators to identify structural, microstructural, and connectivitybased differences between subjects, but variability due to session and scanner biases is a challenge. Methods To investigate DWI variability, we present MASiVar, a multisite dataset consisting of 319 diffusion scans acquired at 3T from b = 1000 to 3000 s/mm 2 across 14 healthy adults, 83 healthy children (5 to 8 years), three sites, and four scanners as a publicly available, preprocessed, and de-identified dataset. With the adult data, we demonstrate the capacity of MASiVar to simultaneously quantify the intrasession, intersession, interscanner, and intersubject variability of four common DWI processing approaches: (1) a tensor signal representation, (2) a multi-compartment neurite orientation dispersion and density model, (3) white matter bundle segmentation, and (4) structural connectomics. Respectively, we evaluate region-wise fractional anisotropy (FA), mean diffusivity, and principal eigenvector; region-wise cerebral spinal fluid volume fraction, intracellular volume fraction, and orientation dispersion index; bundle-wise shape, volume, FA, and length; and whole connectome correlation and maximized modularity, global efficiency, and characteristic path length. Results We plot the variability in these measures at each level and find that it consistently increases with intrasession to intersession to interscanner to intersubject effects across all processing approaches and that sometimes interscanner variability can approach intersubject variability. Conclusions This study demonstrates the potential of MASiVar to more globally investigate DWI variability across multiple levels and processing approaches simultaneously and suggests harmonization between scanners for multisite analyses should be considered prior to inference of group differences on subjects.
46

Convolutional-recurrent neural networks approximate diffusion tractography from T1-weighted MRI and associated anatomical context

Leon Cai et al.Feb 27, 2023
Abstract Diffusion MRI (dMRI) streamline tractography is the gold-standard for in vivo estimation of white matter (WM) pathways in the brain. However, the high angular resolution dMRI acquisitions capable of fitting the microstructural models needed for tractography are often time-consuming and not routinely collected clinically, restricting the scope of tractography analyses. To address this limitation, we build on recent advances in deep learning which have demonstrated that streamline propagation can be learned from dMRI directly without traditional model fitting. Specifically, we propose learning the streamline propagator from T1w MRI to facilitate arbitrary tractography analyses when dMRI is unavailable. To do so, we present a novel convolutional-recurrent neural network (CoRNN) trained in a teacher-student framework that leverages T1w MRI, associated anatomical context, and streamline memory from data acquired for the Human Connectome Project. We characterize our approach under two common tractography paradigms, WM bundle analysis and structural connectomics, and find approximately a 5-15% difference between measures computed from streamlines generated with our approach and those generated using traditional dMRI tractography. When placed in the literature, these results suggest that the accuracy of WM measures computed from T1w MRI with our method is on the level of scan-rescan dMRI variability and raise an important question: is tractography truly a microstructural phenomenon, or has dMRI merely facilitated its discovery and implementation?
46
Paper
Citation5
0
Save