CM
Christoph Mayer
Author with expertise in Impact of Pollinator Decline on Ecosystems and Agriculture
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
17
(82% Open Access)
Cited by:
5,707
h-index:
37
/
i10-index:
60
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Phylogenomics resolves the timing and pattern of insect evolution

Bernhard Misof et al.Nov 6, 2014
+98
G
S
B
Toward an insect evolution resolution Insects are the most diverse group of animals, with the largest number of species. However, many of the evolutionary relationships between insect species have been controversial and difficult to resolve. Misof et al. performed a phylogenomic analysis of protein-coding genes from all major insect orders and close relatives, resolving the placement of taxa. The authors used this resolved phylogenetic tree together with fossil analysis to date the origin of insects to ~479 million years ago and to resolve long-controversial subjects in insect phylogeny. Science , this issue p. 763
0
Citation2,347
0
Save
0

Evolutionary History of the Hymenoptera

Ralph Peters et al.Mar 23, 2017
+20
C
L
R
Hymenoptera (sawflies, wasps, ants, and bees) are one of four mega-diverse insect orders, comprising more than 153,000 described and possibly up to one million undescribed extant species [1, 2]. As parasitoids, predators, and pollinators, Hymenoptera play a fundamental role in virtually all terrestrial ecosystems and are of substantial economic importance [1, 3]. To understand the diversification and key evolutionary transitions of Hymenoptera, most notably from phytophagy to parasitoidism and predation (and vice versa) and from solitary to eusocial life, we inferred the phylogeny and divergence times of all major lineages of Hymenoptera by analyzing 3,256 protein-coding genes in 173 insect species. Our analyses suggest that extant Hymenoptera started to diversify around 281 million years ago (mya). The primarily ectophytophagous sawflies are found to be monophyletic. The species-rich lineages of parasitoid wasps constitute a monophyletic group as well. The little-known, species-poor Trigonaloidea are identified as the sister group of the stinging wasps (Aculeata). Finally, we located the evolutionary root of bees within the apoid wasp family "Crabronidae." Our results reveal that the extant sawfly diversity is largely the result of a previously unrecognized major radiation of phytophagous Hymenoptera that did not lead to wood-dwelling and parasitoidism. They also confirm that all primarily parasitoid wasps are descendants of a single endophytic parasitoid ancestor that lived around 247 mya. Our findings provide the basis for a natural classification of Hymenoptera and allow for future comparative analyses of Hymenoptera, including their genomes, morphology, venoms, and parasitoid and eusocial life styles.
0
Citation724
0
Save
0

Selecting optimal partitioning schemes for phylogenomic datasets

Robert Lanfear et al.Jan 1, 2014
+2
D
B
R
Partitioning involves estimating independent models of molecular evolution for different subsets of sites in a sequence alignment, and has been shown to improve phylogenetic inference. Current methods for estimating best-fit partitioning schemes, however, are only computationally feasible with datasets of fewer than 100 loci. This is a problem because datasets with thousands of loci are increasingly common in phylogenetics. We develop two novel methods for estimating best-fit partitioning schemes on large phylogenomic datasets: strict and relaxed hierarchical clustering. These methods use information from the underlying data to cluster together similar subsets of sites in an alignment, and build on clustering approaches that have been proposed elsewhere. We compare the performance of our methods to each other, and to existing methods for selecting partitioning schemes. We demonstrate that while strict hierarchical clustering has the best computational efficiency on very large datasets, relaxed hierarchical clustering provides scalable efficiency and returns dramatically better partitioning schemes as assessed by common criteria such as AICc and BIC scores. These two methods provide the best current approaches to inferring partitioning schemes for very large datasets. We provide free open-source implementations of the methods in the PartitionFinder software. We hope that the use of these methods will help to improve the inferences made from large phylogenomic datasets.
0
Citation638
0
Save
0

Pan genome of the phytoplankton Emiliania underpins its global distribution

Betsy Read et al.Jun 11, 2013
+74
M
J
B
Coccolithophores have influenced the global climate for over 200 million years. These marine phytoplankton can account for 20 per cent of total carbon fixation in some systems. They form blooms that can occupy hundreds of thousands of square kilometres and are distinguished by their elegantly sculpted calcium carbonate exoskeletons (coccoliths), rendering them visible from space. Although coccolithophores export carbon in the form of organic matter and calcite to the sea floor, they also release CO2 in the calcification process. Hence, they have a complex influence on the carbon cycle, driving either CO2 production or uptake, sequestration and export to the deep ocean. Here we report the first haptophyte reference genome, from the coccolithophore Emiliania huxleyi strain CCMP1516, and sequences from 13 additional isolates. Our analyses reveal a pan genome (core genes plus genes distributed variably between strains) probably supported by an atypical complement of repetitive sequence in the genome. Comparisons across strains demonstrate that E. huxleyi, which has long been considered a single species, harbours extensive genome variability reflected in different metabolic repertoires. Genome variability within this species complex seems to underpin its capacity both to thrive in habitats ranging from the equator to the subarctic and to form large-scale episodic blooms under a wide variety of environmental conditions.
0
Paper
Citation478
0
Save
0

The evolution and genomic basis of beetle diversity

Duane McKenna et al.Nov 18, 2019
+21
B
C
D
The order Coleoptera (beetles) is arguably the most speciose group of animals, but the evolutionary history of beetles, including the impacts of plant feeding (herbivory) on beetle diversification, remain poorly understood. We inferred the phylogeny of beetles using 4,818 genes for 146 species, estimated timing and rates of beetle diversification using 89 genes for 521 species representing all major lineages and traced the evolution of beetle genes enabling symbiont-independent digestion of lignocellulose using 154 genomes or transcriptomes. Phylogenomic analyses of these uniquely comprehensive datasets resolved previously controversial beetle relationships, dated the origin of Coleoptera to the Carboniferous, and supported the codiversification of beetles and angiosperms. Moreover, plant cell wall-degrading enzymes (PCWDEs) obtained from bacteria and fungi via horizontal gene transfers may have been key to the Mesozoic diversification of herbivorous beetles—remarkably, both major independent origins of specialized herbivory in beetles coincide with the first appearances of an arsenal of PCWDEs encoded in their genomes. Furthermore, corresponding (Jurassic) diversification rate increases suggest that these novel genes triggered adaptive radiations that resulted in nearly half of all living beetle species. We propose that PCWDEs enabled efficient digestion of plant tissues, including lignocellulose in cell walls, facilitating the evolution of uniquely specialized plant-feeding habits, such as leaf mining and stem and wood boring. Beetle diversity thus appears to have resulted from multiple factors, including low extinction rates over a long evolutionary history, codiversification with angiosperms, and adaptive radiations of specialized herbivorous beetles following convergent horizontal transfers of microbial genes encoding PCWDEs.
0
Citation473
0
Save
0

Phylogenomics reveals the evolutionary timing and pattern of butterflies and moths

Akito Kawahara et al.Oct 21, 2019
+17
M
D
A
Butterflies and moths (Lepidoptera) are one of the major superradiations of insects, comprising nearly 160,000 described extant species. As herbivores, pollinators, and prey, Lepidoptera play a fundamental role in almost every terrestrial ecosystem. Lepidoptera are also indicators of environmental change and serve as models for research on mimicry and genetics. They have been central to the development of coevolutionary hypotheses, such as butterflies with flowering plants and moths’ evolutionary arms race with echolocating bats. However, these hypotheses have not been rigorously tested, because a robust lepidopteran phylogeny and timing of evolutionary novelties are lacking. To address these issues, we inferred a comprehensive phylogeny of Lepidoptera, using the largest dataset assembled for the order (2,098 orthologous protein-coding genes from transcriptomes of 186 species, representing nearly all superfamilies), and dated it with carefully evaluated synapomorphy-based fossils. The oldest members of the Lepidoptera crown group appeared in the Late Carboniferous (∼300 Ma) and fed on nonvascular land plants. Lepidoptera evolved the tube-like proboscis in the Middle Triassic (∼241 Ma), which allowed them to acquire nectar from flowering plants. This morphological innovation, along with other traits, likely promoted the extraordinary diversification of superfamily-level lepidopteran crown groups. The ancestor of butterflies was likely nocturnal, and our results indicate that butterflies became day-flying in the Late Cretaceous (∼98 Ma). Moth hearing organs arose multiple times before the evolutionary arms race between moths and bats, perhaps initially detecting a wide range of sound frequencies before being co-opted to specifically detect bat sonar. Our study provides an essential framework for future comparative studies on butterfly and moth evolution.
0
Citation362
0
Save
0

Evolutionary genomics of the cold-adapted diatom Fragilariopsis cylindrus

Thomas Möck et al.Jan 1, 2017
+41
J
R
T
The genome of the Southern Ocean phytoplankton Fragilariopsis cylindrus differs markedly from the genomes of its more temperate relatives, with divergent alleles being differentially expressed in environmentally specific conditions such as freezing and darkness. Diatoms are the main primary producers in the Southern Ocean, but how they have adapted to an environment with such extremes of light and temperature has remained unknown. Here Thomas Mock et al. report the genome sequence of a cold-adapted diatom from the Southern Ocean, Fragilariopsis cylindrus, and compare this 'psychrophile' with diatoms that evolved in temperate oceans. They find that its genome contains highly diverged alleles that are differentially expressed across environmental conditions. The Southern Ocean houses a diverse and productive community of organisms1,2. Unicellular eukaryotic diatoms are the main primary producers in this environment, where photosynthesis is limited by low concentrations of dissolved iron and large seasonal fluctuations in light, temperature and the extent of sea ice3,4,5,6,7. How diatoms have adapted to this extreme environment is largely unknown. Here we present insights into the genome evolution of a cold-adapted diatom from the Southern Ocean, Fragilariopsis cylindrus8,9, based on a comparison with temperate diatoms. We find that approximately 24.7 per cent of the diploid F. cylindrus genome consists of genetic loci with alleles that are highly divergent (15.1 megabases of the total genome size of 61.1 megabases). These divergent alleles were differentially expressed across environmental conditions, including darkness, low iron, freezing, elevated temperature and increased CO2. Alleles with the largest ratio of non-synonymous to synonymous nucleotide substitutions also show the most pronounced condition-dependent expression, suggesting a correlation between diversifying selection and allelic differentiation. Divergent alleles may be involved in adaptation to environmental fluctuations in the Southern Ocean.
0
Citation343
0
Save
0

Phylogenomics and the evolution of hemipteroid insects

Kevin Johnson et al.Nov 26, 2018
+24
F
C
K
Hemipteroid insects (Paraneoptera), with over 10% of all known insect diversity, are a major component of terrestrial and aquatic ecosystems. Previous phylogenetic analyses have not consistently resolved the relationships among major hemipteroid lineages. We provide maximum likelihood-based phylogenomic analyses of a taxonomically comprehensive dataset comprising sequences of 2,395 single-copy, protein-coding genes for 193 samples of hemipteroid insects and outgroups. These analyses yield a well-supported phylogeny for hemipteroid insects. Monophyly of each of the three hemipteroid orders (Psocodea, Thysanoptera, and Hemiptera) is strongly supported, as are most relationships among suborders and families. Thysanoptera (thrips) is strongly supported as sister to Hemiptera. However, as in a recent large-scale analysis sampling all insect orders, trees from our data matrices support Psocodea (bark lice and parasitic lice) as the sister group to the holometabolous insects (those with complete metamorphosis). In contrast, four-cluster likelihood mapping of these data does not support this result. A molecular dating analysis using 23 fossil calibration points suggests hemipteroid insects began diversifying before the Carboniferous, over 365 million years ago. We also explore implications for understanding the timing of diversification, the evolution of morphological traits, and the evolution of mitochondrial genome organization. These results provide a phylogenetic framework for future studies of the group.
0
Paper
Citation316
0
Save
50

Are fleas highly modified Mecoptera? Phylogenomic resolution of Antliophora (Insecta: Holometabola)

Karen Meusemann et al.Nov 20, 2020
+20
X
S
K
Abstract Insect orders have been defined and stable for decades, with few notable exceptions ( e.g ., Blattodea and Psocoptera). One of the few remaining questions of order-level monophyly is that of Mecoptera in respect to the phylogenetic placement of Siphonaptera (fleas). We used a large set of transcriptomic nucleotide sequence data representing 56 species and more than 3,000 single-copy genes to resolve the evolutionary history of Antliophora, including fleas (Siphonaptera), scorpionflies and relatives (Mecoptera), and true flies (Diptera). We find that fleas and mecopterans together are the sister group of flies. However, our data and/or analyses are unable to distinguish whether fleas are sister to a monophyletic Mecoptera, or whether they arose from within extant mecopteran families, rendering Mecoptera paraphyletic. We did not detect parameter bias in our dataset after applying a broad range of detection methods. Counter to a previous hypothesis that placed fleas within Mecoptera as the sister group to wingless boreids (snow fleas), we found a potential sister group relationship between fleas and the enigmatic family Nannochoristidae. Although we lack conclusive evidence, it seems possible that fleas represent the most-species rich group of modern mecopterans and that their parasitic lifestyle and morphological adaptations have simply made them unrecognizable in respect to their order-level classification.
50
Citation10
0
Save
1

How old are dragonflies and damselflies? Odonata (Insecta) transcriptomics resolve familial relationships

Manpreet Kohli et al.Jul 7, 2020
+14
C
H
M
Summary Dragonflies and damselflies, representing the insect order Odonata, are among the earliest flying insects with living (extant) representatives. However, unravelling details of their long evolutionary history, such as egg laying (oviposition) strategies, is impeded by unresolved phylogenetic relationships, an issue particularly prevalent in damselfly families and fossil lineages. Here we present the first transcriptome-based phylogenetic reconstruction of Odonata, analyzing 2,980 protein-coding genes in 105 species representing nearly all of the order’s families (except Austropetaliidae and Neopetaliidae). All damselfly families and most dragonfly families are recovered as monophyletic groups. Our Molecular clock estimates suggest that crown-Zygoptera (damselflies) and -Anisoptera (dragonflies) both arose during the late Triassic. Several of the observed long inner branches in our topology are indicative of the extinction of once flourishing lineages. We also find that exophytic egg laying behaviour with a reduced ovipositor evolved in certain dragonflies during the late Jurassic / early Cretaceous. Lastly, we find that certain fossils have an unexpected deterring impact in divergence dating analysis.
1
Citation5
0
Save
Load More