TL
Téo Lemane
Author with expertise in RNA Sequencing Data Analysis
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
7
h-index:
5
/
i10-index:
1
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
62

kmtricks: Efficient and flexible construction of Bloom filters for large sequencing data collections

Téo Lemane et al.Feb 17, 2021
Abstract When indexing large collections of short-read sequencing data, a common operation that has now been implemented in several tools (Sequence Bloom Trees and variants, BIGSI, ..) is to construct a collection of Bloom filters, one per sample. Each Bloom filter is used to represent a set of k-mers which approximates the desired set of all the non-erroneous k-mers present in the sample. However, this approximation is imperfect, especially in the case of metagenomics data. Erroneous but abundant k-mers are wrongly included, and non-erroneous but low-abundant ones are wrongly discarded. We propose kmtricks , a novel approach for generating Bloom filters from terabase-sized collections of sequencing data. Our main contributions are 1/ an efficient method for jointly counting k-mers across multiple samples, including a streamlined Bloom filter construction by directly counting, partitioning and sorting hashes instead of k-mers, which is approximately four times faster than state-of-the-art tools; 2/ a novel technique that takes advantage of joint counting to preserve low-abundant k-mers present in several samples, improving the recovery of non-erroneous k-mers. Our experiments highlight that this technique preserves around 8x more k-mers than the usual yet crude filtering of low-abundance k-mers in a large metagenomics dataset. Availability https://github.com/tlemane/kmtricks Funding The work was funded by IPL Inria Neuromarkers, ANR Inception (ANR-16-CONV-0005), ANR Prairie (ANR-19-P3IA-0001), ANR SeqDigger (ANR-19-CE45-0008).
62
Citation5
0
Save
1

decOM: Similarity-based microbial source tracking of ancient oral samples using k-mer-based methods

Camila González et al.Jan 27, 2023
Abstract Background The analysis of ancient oral metagenomes from archaeological human and animal samples is largely confounded by contaminant DNA sequences from modern and environmental sources. Existing methods for Microbial Source Tracking (MST) estimate the proportions of environmental sources, but do not perform well on ancient metagenomes. We developed a novel method called decOM for Microbial Source Tracking and classification of ancient and modern metagenomic samples using k-mer matrices. Results We analysed a collection of 360 ancient oral, modern oral, sediment/soil and skin metagenomes, using stratified five-fold cross-validation. decOM estimates the contributions of these source environments in ancient oral metagenomic samples with high accuracy, outperforming two state-of-the-art methods for source tracking, FEAST and mSourceTracker. Conclusions decOM is a high-accuracy microbial source tracking method, suitable for ancient oral metagenomic data sets. The decOM method is generic and could also be adapted for MST of other ancient and modern types of metagenomes. We anticipate that decOM will be a valuable tool for MST of ancient metagenomic studies.
1
Citation2
0
Save
0

The genomics and evolution of inter-sexual mimicry and female-limited polymorphisms in damselflies

Beatriz Willink et al.Jan 1, 2023
Sex-limited morphs can provide profound insights into the evolution and genomic architecture of complex phenotypes. Inter-sexual mimicry is one particular type of sex-limited polymorphism in which a novel morph resembles the opposite sex. While inter-sexual mimics are known in both sexes and a diverse range of animals, their evolutionary origin is poorly understood. Here, we investigated the genomic basis of female-limited morphs and male mimicry in the Common Bluetail damselfly. Differential gene expression between morphs has been documented in damselflies, but no causal locus has been previously identified. We found that male-mimicry originated in an ancestrally sexually-dimorphic lineage in association with multiple structural changes, probably driven by transposable element activity. These changes resulted in ~900 kb of novel genomic content that is partly shared by male mimics in a close relative, indicating that male mimicry is a trans-species polymorphism. More recently, a third morph originated following the translocation of part of the male-mimicry sequence into a genomic position ~3.5 mb apart. We provide evidence of balancing selection maintaining male-mimicry, in line with previous field population studies. Our results underscore how structural variants affecting a handful of potentially regulatory genes and morph-specific genes, can give rise to novel and complex phenotypic polymorphisms.