Abstract Molting, that is, the synthesis and shedding of a cuticular exoskeleton, is a defining characteristic of ecdysozoa. In nematodes such as C. elegans , molts rhythmically terminate each of four larval stages. The molting cycle is tightly coupled to the rhythmic accumulation of thousands of transcripts. Here, using chromatin immunoprecipitation coupled to sequencing (ChIP-seq) and quantitative reporter assays, we show that these dynamic gene expression patterns rely on rhythmic transcription. To gain insight into the relevant gene regulatory networks (GRNs), we performed an RNAi-based screen for transcription factors required for molting to identify potential components of a molting clock. We find that depletion of GRH-1, BLMP-1, NHR-23, NHR-25, MYRF-1 or BED-3 impairs progression through the molting cycle. We characterize GRH-1, a Grainyhead/LSF transcription factor whose orthologues in other animals are key epithelial cell fate regulators. We show that GRH-1 depletion causes a dose-dependent extension of molt duration, defects in cuticle formation and shedding, and larval death. Coincident with its rhythmic accumulation, GRH-1 is required repetitively for each molt, during specific time windows preceding lethargus. These findings are consistent with a function of GRH-1 in a molting cycle GRN. As its mammalian orthologues, as well as those of BLMP-1 and NHR-23, have been implicated in rhythmic homeostatic skin regeneration in mouse, the mechanisms underlying rhythmic C. elegans molting may apply beyond nematodes.