XZ
Xiaofan Zhou
Author with expertise in RNA Sequencing Data Analysis
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
28
(64% Open Access)
Cited by:
796
h-index:
37
/
i10-index:
76
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The water lily genome and the early evolution of flowering plants

Liangsheng Zhang et al.Dec 18, 2019
Abstract Water lilies belong to the angiosperm order Nymphaeales. Amborellales, Nymphaeales and Austrobaileyales together form the so-called ANA-grade of angiosperms, which are extant representatives of lineages that diverged the earliest from the lineage leading to the extant mesangiosperms 1–3 . Here we report the 409-megabase genome sequence of the blue-petal water lily ( Nymphaea colorata ). Our phylogenomic analyses support Amborellales and Nymphaeales as successive sister lineages to all other extant angiosperms. The N. colorata genome and 19 other water lily transcriptomes reveal a Nymphaealean whole-genome duplication event, which is shared by Nymphaeaceae and possibly Cabombaceae. Among the genes retained from this whole-genome duplication are homologues of genes that regulate flowering transition and flower development. The broad expression of homologues of floral ABCE genes in N. colorata might support a similarly broadly active ancestral ABCE model of floral organ determination in early angiosperms. Water lilies have evolved attractive floral scents and colours, which are features shared with mesangiosperms, and we identified their putative biosynthetic genes in N. colorata . The chemical compounds and biosynthetic genes behind floral scents suggest that they have evolved in parallel to those in mesangiosperms. Because of its unique phylogenetic position, the N. colorata genome sheds light on the early evolution of angiosperms.
0
Citation287
0
Save
89

Genome-scale phylogeny and contrasting modes of genome evolution in the fungal phylum Ascomycota

Xing‐Xing Shen et al.May 13, 2020
Abstract Ascomycota, the largest and best-studied phylum of fungi, contains three subphyla: Saccharomycotina (budding yeasts), Pezizomycotina (filamentous fungi), and Taphrinomycotina (fission yeasts); organisms from all three subphyla have been invaluable as models in diverse fields (e.g., biotechnology, cell biology, genetics, and medicine). Despite its importance, we still lack a comprehensive genome-scale phylogeny or understanding of the similarities and differences in the mode of genome evolution within this phylum. To address these gaps, we examined 1,107 genomes from Saccharomycotina (332), Pezizomycotina (761), and Taphrinomycotina (14) species to infer the Ascomycota phylogeny, estimate its timetree, and examine the evolution of key genomic properties. We inferred a robust genome-wide phylogeny that resolves several contentious relationships and estimated that the Ascomycota last common ancestor likely originated in the Ediacaran (~563 ± 68 million years ago). Comparisons of genomic properties revealed that Saccharomycotina and Pezizomycotina, the two taxon-rich subphyla, differed greatly in their genome properties. Saccharomycotina typically have smaller genomes, lower GC contents, lower numbers of genes, and higher rates of molecular sequence evolution compared to Pezizomycotina. Ancestral state reconstruction showed that the genome properties of the Saccharomycotina and Pezizomycotina last common ancestors were very similar, enabling inference of the direction of evolutionary change. For example, we found that a lineage-specific acceleration led to a 1.6-fold higher evolutionary rate in Saccharomycotina, whereas the 10% difference in GC content between Saccharomycotina and Pezizomycotina genomes stems from a trend toward AT bases within budding yeasts and toward GC bases within filamentous fungi. These results provide a robust evolutionary framework for understanding the diversification of the largest fungal phylum.
89
Citation7
0
Save
40

Genomic and phenotypic analysis of COVID-19-associated pulmonary aspergillosis isolates of Aspergillus fumigatus

Jacob Steenwyk et al.Nov 6, 2020
Abstract The ongoing global pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the coronavirus disease 2019 (COVID-19) first described from Wuhan, China. A subset of COVID-19 patients has been reported to have acquired secondary infections by microbial pathogens, such as fungal opportunistic pathogens from the genus Aspergillus . To gain insight into COVID-19 associated pulmonary aspergillosis (CAPA), we analyzed the genomes and characterized the phenotypic profiles of four CAPA isolates of Aspergillus fumigatus obtained from patients treated in the area of North Rhine-Westphalia, Germany. By examining the mutational spectrum of single nucleotide polymorphisms, insertion-deletion polymorphisms, and copy number variants among 206 genes known to modulate A. fumigatus virulence, we found that CAPA isolate genomes do not exhibit major differences from the genome of the Af293 reference strain. By examining virulence in an invertebrate moth model, growth in the presence of osmotic, cell wall, and oxidative stressors, and the minimum inhibitory concentration of antifungal drugs, we found that CAPA isolates were generally, but not always, similar to A. fumigatus reference strains Af293 and CEA17. Notably, CAPA isolate D had more putative loss of function mutations in genes known to increase virulence when deleted (e.g., in the FLEA gene, which encodes a lectin recognized by macrophages). Moreover, CAPA isolate D was significantly more virulent than the other three CAPA isolates and the A. fumigatus reference strains tested. These findings expand our understanding of the genomic and phenotypic characteristics of isolates that cause CAPA.
40
Citation5
0
Save
0

Evaluating fast maximum likelihood-based phylogenetic programs using empirical phylogenomic data sets

Xiaofan Zhou et al.May 25, 2017
Abstract Phylogenetics has witnessed dramatic increases in the sizes of data matrices assembled to resolve branches of the tree of life, motivating the development of programs for fast, yet accurate, inference. For example, several different fast programs have been developed in the very popular maximum likelihood framework, including RAxML/ExaML, PhyML, IQ-TREE, and FastTree. Although these four programs are widely used, a systematic evaluation and comparison of their performance using empirical genome-scale data matrices has so far been lacking. To address this question, we evaluated these four programs on 19 empirical phylogenomic data sets from diverse animal, plant, and fungal lineages with respect to likelihood maximization, tree topology, and computational speed. For single-gene tree inference, we found that the more exhaustive and slower strategies (ten searches per alignment) outperformed faster strategies (one tree search per alignment) using RAxML, PhyML, or IQ-TREE. Interestingly, single-gene trees inferred by the three programs yielded comparable coalescent-based species tree estimations. For concatenation–based species tree inference, IQ-TREE consistently achieved the best-observed likelihoods for all data sets, and RAxML/ExaML was a close second. In contrast, PhyML often failed to complete concatenation-based analyses, whereas FastTree was the fastest but generated lower likelihood values and more dissimilar tree topologies in both types of analyses. Finally, data matrix properties, such as the number of taxa and the strength of phylogenetic signal, sometimes substantially influenced the relative performance of the programs. Our results provide real-world gene and species tree phylogenetic inference benchmarks to inform the design and execution of large-scale phylogenomic data analyses.
0
Citation3
0
Save
0

Repeated horizontal gene transfer of GALactose metabolism genes violates Dollo’s law of irreversible loss

Max Haase et al.Jul 24, 2020
Abstract Dollo’s law posits that evolutionary losses are irreversible, thereby narrowing the potential paths of evolutionary change. While phenotypic reversals to ancestral states have been observed, little is known about their underlying genetic causes. The genomes of budding yeasts have been shaped by extensive reductive evolution, such as reduced genome sizes and the losses of metabolic capabilities. However, the extent and mechanisms of trait reacquisition after gene loss in yeasts have not been thoroughly studied. Here, through phylogenomic analyses, we reconstructed the evolutionary history of the yeast galactose utilization pathway and observed widespread and repeated losses of the ability to utilize galactose, which occurred concurrently with the losses of GAL actose ( GAL ) utilization genes. Unexpectedly, we detected three galactose-utilizing lineages that were deeply embedded within clades that underwent ancient losses of galactose utilization. We show that at least two, and possibly three, lineages reacquired the GAL pathway via yeast-to-yeast horizontal gene transfer. Our results show how trait reacquisition can occur tens of millions of years after an initial loss via horizontal gene transfer from distant relatives. These findings demonstrate that the losses of complex traits and even whole pathways are not always evolutionary dead-ends, highlighting how reversals to ancestral states can occur.
0
Citation1
0
Save
1

Saccharomycotina yeasts defy longstanding macroecological patterns

Kyle David et al.Aug 31, 2023
Abstract The Saccharomycotina yeasts (“yeasts” hereafter) are a fungal clade of scientific, economic, and medical significance. Yeasts are highly ecologically diverse, found across a broad range of environments in every biome and continent on earth 1 ; however, little is known about what rules govern the macroecology of yeast species and their range limits in the wild 2 . Here, we trained machine learning models on 12,221 occurrence records and 96 environmental variables to infer global distribution maps for 186 yeast species (∼15% of described species from 75% of orders) and to test environmental drivers of yeast biogeography and macroecology. We found that predicted yeast diversity hotspots occur in mixed montane forests in temperate climates. Diversity in vegetation type and topography were some of the greatest predictors of yeast species richness, suggesting that microhabitats and environmental clines are key to yeast diversification. We further found that range limits in yeasts are significantly influenced by carbon niche breadth and range overlap with other yeast species, with carbon specialists and species in high diversity environments exhibiting reduced geographic ranges. Finally, yeasts contravene many longstanding macroecological principles, including the latitudinal diversity gradient, temperature-dependent species richness, and latitude-dependent range size (Rapoport’s rule). These results unveil how the environment governs the global diversity and distribution of species in the yeast subphylum. These high-resolution models of yeast species distributions will facilitate the prediction of economically relevant and emerging pathogenic species under current and future climate scenarios.
1
Paper
Citation1
0
Save
0

Unique trajectory of gene family evolution from genomic analysis of nearly all known species in an ancient yeast lineage

Bo Feng et al.Jun 6, 2024
Abstract Gene gains and losses are a major driver of genome evolution; their precise characterization can provide insights into the origin and diversification of major lineages. Here, we examined gene family evolution of 1,154 genomes from nearly all known species in the medically and technologically important yeast subphylum Saccharomycotina. We found that yeast gene family and genome evolution are distinct from plants, animals, and filamentous ascomycetes and are characterized by small genome sizes and smaller gene numbers but larger gene family sizes. Faster-evolving lineages (FELs) in yeasts experienced significantly higher rates of gene losses—commensurate with a narrowing of metabolic niche breadth—but higher speciation rates than their slower-evolving sister lineages (SELs). Gene families most often lost are those involved in mRNA splicing, carbohydrate metabolism, and cell division and are likely associated with intron loss, metabolic breadth, and non-canonical cell cycle processes. Our results highlight the significant role of gene family contractions in the evolution of yeast metabolism, genome function, and speciation, and suggest that gene family evolutionary trajectories have differed markedly across major eukaryotic lineages.
0
Citation1
0
Save
1

A genome-scale Opisthokonta tree of life: toward phylogenomic resolution of ancient divergences

Hongyue Liu et al.Sep 21, 2023
Abstract Ancient divergences within Opisthokonta—a major lineage that includes organisms in the kingdoms Animalia, Fungi, and their unicellular relatives— remain contentious, hindering investigations of the evolutionary processes that gave rise to two kingdoms and the repeated emergence of iconic phenotypes like multicellularity. Here, we use genome-scale amounts of data to reconstruct the most taxon-rich Opisthokonta tree of life to date (348 species) and place divergences in geologic time, suggesting a Mesoproterozoic origin (∼ 1.11 billion years ago). By dissecting multiple dimensions of phylogenomic error, such as the influence of taxon sampling and model complexity, we found that deep divergences within Holozoa remain unresolved and suggest Pluriformea is either sister to Ichthyosporea and Filozoa (Pluriformea-sister hypothesis) or is monophyletic to Ichthyosporea, forming the Teretosporea lineage (Teretosporea-sister hypothesis). A combination of information theory and sensitivity analyses revealed that the inferred unicellular Holozoa relationships are largely robust to common sources of analytical error, such as insufficient model complexity, and suggest that previous reports likely suffered from insufficient taxon sampling. Our study presents a robust Opisthokonta phylogenomic framework, highlights the challenges in resolving the relationships of unicellular Holozoa, and paves the way for illuminating ancient evolutionary episodes concerning the origin of two kingdoms.
0

Diverse signatures of convergent evolution in cacti-associated yeasts

Carla Gonçalves et al.Jan 1, 2023
Many distantly related organisms have convergently evolved traits and lifestyles that enable them to live in similar ecological environments. However, the extent of phenotypic convergence evolving through the same or distinct genetic trajectories remains an open question. Here, we leverage a comprehensive dataset of genomic and phenotypic data from 1,049 yeast species in the subphylum Saccharomycotina (Kingdom Fungi, Phylum Ascomycota) to explore signatures of convergent evolution in cactophilic yeasts, ecological specialists associated with cacti. We inferred that the ecological association of yeasts with cacti arose independently ~17 times. Using machine-learning, we further found that cactophily can be predicted with 76% accuracy from functional genomic and phenotypic data. The most informative feature for predicting cactophily was thermotolerance, which is likely associated with duplication and altered evolutionary rates of genes impacting the cell envelope in several cactophilic lineages. We also identified horizontal gene transfer and duplication events of plant cell wall-degrading enzymes in distantly related cactophilic clades, suggesting that putatively adaptive traits evolved through disparate molecular mechanisms. Remarkably, multiple cactophilic lineages and their close relatives are emerging human opportunistic pathogens, suggesting that the cactophilic lifestyle - and perhaps more generally lifestyles favoring thermotolerance - may preadapt yeasts to cause human disease. This work underscores the potential of a multifaceted approach involving high throughput genomic and phenotypic data to shed light onto ecological adaptation and highlights how convergent evolution to wild environments could facilitate the transition to human pathogenicity.
Load More