Abstract Gene set enrichment analysis (GSEA) has been widely used to identify gene sets with statistically significant difference between cases and controls against a large gene set. GSEA needs both phenotype labels and expression of genes. However, gene expression are assessed more often for model organisms than minor species. More importantly, gene expression could not be measured under specific conditions for human, due to high healthy risk of direct experiments, such as non-approved treatment or gene knockout, and then often substituted by mouse. Thus predicting enrichment significance (on a phenotype) of a given gene set of a species (target, say human), by using gene expression measured under the same phenotype of the other species (source, say mouse) is a vital and challenging problem, which we call CROSS-species Gene Set Enrichment Problem (XGSEP). For XGSEP, we propose XGSEA (Cross-species Gene Set Enrichment Analysis), with three steps of: 1) running GSEA for a source species to obtain enrichment scores and p -values of source gene sets; 2) representing the relation between source and target gene sets by domain adaptation; and 3) using regression to predict p -values of target gene sets, based on the representation in 2). We extensively validated XGSEA by using four real data sets under various settings, proving that XGSEA significantly outperformed three baseline methods. A case study of identifying important human pathways for T cell dysfunction and reprogramming from mouse ATAC-Seq data further confirmed the reliability of XGSEA. Source code is available through https://github.com/LiminLi-xjtu/XGSEA Author summary Gene set enrichment analysis (GSEA) is a powerful tool in the gene sets differential analysis given a ranked gene list. GSEA requires complete data, gene expression with phenotype labels. However, gene expression could not be measured under specific conditions for human, due to high risk of direct experiments, such as non-approved treatment or gene knockout, and then often substituted by mouse. Thus no availability of gene expression leads to more challenging problem, CROSS-species Gene Set Enrichment Problem (XGSEP), in which enrichment significance (on a phenotype) of a given gene set of a species (target, say human) is predicted by using gene expression measured under the same phenotype of the other species (source, say mouse). In this work, we propose XGSEA (Cross-species Gene Set Enrichment Analysis) for XGSEP, with three steps of: 1) GSEA; 2) domain adaptation; and 3) regression. The results of four real data sets and a case study indicate that XGSEA significantly outperformed three baseline methods and confirmed the reliability of XGSEA.