SR
Staniša Raspopović
Author with expertise in Analysis of Electromyography Signal Processing
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
12
(67% Open Access)
Cited by:
2,187
h-index:
32
/
i10-index:
53
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Double nerve intraneural interface implant on a human amputee for robotic hand control

Paolo Rossini et al.Jan 28, 2010
The principle underlying this project is that, despite nervous reorganization following upper limb amputation, original pathways and CNS relays partially maintain their function and can be exploited for interfacing prostheses. Aim of this study is to evaluate a novel peripheral intraneural multielectrode for multi-movement prosthesis control and for sensory feed-back, while assessing cortical reorganization following the re-acquired stream of data. Four intrafascicular longitudinal flexible multielectrodes (tf-LIFE4) were implanted in the median and ulnar nerves of an amputee; they reliably recorded output signals for 4 weeks. Artificial intelligence classifiers were used off-line to analyse LIFE signals recorded during three distinct hand movements under voluntary order. Real-time control of motor output was achieved for the three actions. When applied off-line artificial intelligence reached >85% real-time correct classification of trials. Moreover, different types of current stimulation were determined to allow reproducible and localized hand/fingers sensations. Cortical organization was observed via TMS in parallel with partial resolution of symptoms due to the phantom-limb syndrome (PLS). tf-LIFE4s recorded output signals in human nerves for 4 weeks, though the efficacy of sensory stimulation decayed after 10 days. Recording from a number of fibres permitted a high percentage of distinct actions to be classified correctly. Reversal of plastic changes and alleviation of PLS represent corollary findings of potential therapeutic benefit. This study represents a breakthrough in robotic hand use in amputees.
0

A Computational Model for Epidural Electrical Stimulation of Spinal Sensorimotor Circuits

Marco Capogrosso et al.Dec 4, 2013
Epidural electrical stimulation (EES) of lumbosacral segments can restore a range of movements after spinal cord injury. However, the mechanisms and neural structures through which EES facilitates movement execution remain unclear. Here, we designed a computational model and performed in vivo experiments to investigate the type of fibers, neurons, and circuits recruited in response to EES. We first developed a realistic finite element computer model of rat lumbosacral segments to identify the currents generated by EES. To evaluate the impact of these currents on sensorimotor circuits, we coupled this model with an anatomically realistic axon-cable model of motoneurons, interneurons, and myelinated afferent fibers for antagonistic ankle muscles. Comparisons between computer simulations and experiments revealed the ability of the model to predict EES-evoked motor responses over multiple intensities and locations. Analysis of the recruited neural structures revealed the lack of direct influence of EES on motoneurons and interneurons. Simulations and pharmacological experiments demonstrated that EES engages spinal circuits trans-synaptically through the recruitment of myelinated afferent fibers. The model also predicted the capacity of spatially distinct EES to modulate side-specific limb movements and, to a lesser extent, extension versus flexion. These predictions were confirmed during standing and walking enabled by EES in spinal rats. These combined results provide a mechanistic framework for the design of spinal neuroprosthetic systems to improve standing and walking after neurological disorders.
0
Paper
Citation346
0
Save
1

A psychometric platform to collect somatosensory sensations for neuroprosthetic use

Giacomo Valle et al.Jul 24, 2020
Abstract Somatosensory neuroprostheses exploit invasive and non-invasive feedback technologies to restore sensorimotor functions lost to disease or trauma. These devices use electrical stimulation to communicate sensory information to the brain. A sensation characterization procedure is thus necessary to determine the appropriate stimulation parameters and to establish a clear personalized map of the sensations that can be restored. Several questionnaires have been described in the literature to collect the quality, type, location and intensity of the evoked sensations, but there is still no standard psychometric platform. Here we propose a new psychometric system containing previously validated questionnaires on evoked sensations, which can be applied to any kind of somatosensory neuroprosthesis. The platform collects stimulation parameters used to elicit sensations; records subjects’ percepts in terms of sensation location, type, quality, perceptual threshold, and intensity. It further collects data using standardized assessment questionnaires and scales, performs measurements over time, and collects phantom limb pain syndrome data. The psychometric platform is user-friendly and provides clinicians with all the information needed to assess the sensory feedback. The psychometric platform was validated with three trans-radial amputees. They platform was used to assess intraneural sensory feedback provided through implanted peripheral nerve interfaces. The proposed platform could act as a new standardized assessment toolbox to homogenize the reporting of results obtained with different technologies in the field of somatosensory neuroprosthetics.
0

Stability of Thin-Film Metallization in Flexible Stimulation Electrodes: Analysis and Improvement of in vivo Performance

Paul Čvančara et al.May 22, 2019
ABSTRACT Micro-fabricated neural interfaces based on polyimide (PI) are achieving increasing importance in translational research. The ability to produce well-defined micro-structures with properties that include chemical inertness, mechanical flexibility and low water uptake are key advantages for these devices. This paper reports the development of the transverse intrafascicular multichannel electrode (TIME) used to deliver intraneural sensory feedback to an upper-limb amputee in combination with a sensorized hand prosthesis. A first-in-human study limited to 30 days was performed. About 90 % of the stimulation contact sites of the TIMEs maintained electrical functionality and stability during the full implant period. However, optical analysis post-explantation revealed that 62.5 % of the stimulation contacts showed signs of mechanical damage at the metallization-PI interface. Such damage likely occurred due to handling during explantation and subsequent analysis, since a significant change in impedance was not observed in vivo . Nevertheless, whereas device integrity is mandatory for long-term functionality in chronic implantation, measures to increase the bonding strength of the metallization-PI interface deserve further investigation. We report here that silicon carbide (SiC) is an effective adhesion-promoting layer resisting heavy electrical stimulation conditions in vivo . Optical analysis of the new electrodes revealed that the metallization remained unaltered after delivering over 14 million pulses in vivo without signs of delamination at the metallization-PI interface. Reliable adhesion of thin-film metallization to substrate has been proven using SiC, improving the potential transfer of micro-fabricated neural electrodes for chronic clinical applications.
0
Paper
Citation2
0
Save
1

Neural population dynamics reveals disruption of spinal sensorimotor computations during electrical stimulation of sensory afferents

Natalija Katic et al.Nov 20, 2021
Abstract While neurostimulation technologies are rapidly approaching clinical applications for sensorimotor disorders, the impact of electrical stimulation on network dynamics is still unknown. Given the high degree of shared processing in neural structures, it is critical to understand if neurostimulation affects functions that are related to, but not targeted by the intervention. Here we approached this question by studying the effects of electrical stimulation of cutaneous afferents on unrelated processing of proprioceptive inputs. We recorded intra-spinal neural activity in four monkeys while generating proprioceptive inputs from the radial nerve. We then applied continuous stimulation to the radial nerve cutaneous branch and quantified the impact of the stimulation on spinal processing of proprioceptive inputs via neural population dynamics. Proprioceptive pulses consistently produced neural trajectories that were disrupted by concurrent cutaneous stimulation. This disruption propagated to the somatosensory cortex, suggesting that electrical stimulation can perturb natural information processing across the neural axis.
0

On the Reliability of Chronically Implanted Thin-Film Electrodes in Human Arm Nerves for Neuroprosthetic Applications

Paul Čvančara et al.May 29, 2019
Direct stimulation of peripheral nerves can successfully provide sensory feedback to amputees while using hand prostheses. Recent clinical studies have addressed this important limitation of current prostheses solutions using different implantable electrode concepts. Longevity of the electrodes is key to success. We have improved the long-term stability of the polyimide-based transverse intrafascicular multichannel electrode (TIME) that showed promising performance in clinical trials by integration of silicon carbide adhesion layers. The TIMEs were implanted in the median and ulnar nerves of three trans-radial amputees for up to six months. Here, we present the characterization of the electrical properties of the thin-film metallization as well as material status post explantationem for the first time. The TIMEs showed reliable performance in terms of eliciting sensation and stayed within the electrochemical safe limits maintaining a good working range with respect to amplitude modulation. After termination of the trials and explantation of the probes, no signs of corrosion or morphological change to the thin-film metallization was observed by means of electrochemical and optical analysis. Damage to the metallization was assigned exclusively to mechanical impacts during explantation and handling. The results indicate that thin-film metallization on polymer substrates is applicable in permanent implant system.
Load More