MB
Marta Bianciardi
Author with expertise in Analysis of Brain Functional Connectivity Networks
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
9
(89% Open Access)
Cited by:
6
h-index:
27
/
i10-index:
41
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Functional connectome of arousal and motor brainstem nuclei in living humans by 7 Tesla resting-state fMRI

Kavita Singh et al.Oct 19, 2021
Abstract Brainstem nuclei play a pivotal role in many functions, such as arousal and motor control. Nevertheless, the connectivity of arousal and motor brainstem nuclei is understudied in living humans due to the limited sensitivity and spatial resolution of conventional imaging, and to the lack of atlases of these deep tiny regions of the brain. For a holistic comprehension of sleep, arousal and associated motor processes, we investigated in 20 healthy subjects the resting-state functional connectivity of 18 arousal and motor brainstem nuclei in living humans. To do so, we used high spatial-resolution 7 Tesla resting-state fMRI, as well as a recently developed in-vivo probabilistic atlas of these nuclei in stereotactic space. Further, we verified the translatability of our brainstem connectome approach to conventional (e.g. 3 Tesla) fMRI. Arousal brainstem nuclei displayed high interconnectivity, as well as connectivity to the thalamus, hypothalamus, basal forebrain and frontal cortex, in line with animal studies and as expected for arousal regions. Motor brainstem nuclei showed expected connectivity to the cerebellum, basal ganglia and motor cortex, as well as high interconnectivity. Comparison of 3 Tesla to 7 Tesla connectivity results indicated good translatability of our brainstem connectome approach to conventional fMRI, especially for cortical and subcortical (non-brainstem) targets and to a lesser extent for brainstem targets. The functional connectome of 18 arousal and motor brainstem nuclei with the rest of the brain might provide a better understanding of arousal, sleep and accompanying motor function in living humans in health and disease.
9

7-Tesla evidence for columnar and rostral–caudal organization of the human periaqueductal gray response in the absence of threat: a working memory study

Alexandra Fischbach et al.Dec 22, 2022
Abstract The periaqueductal gray (PAG) is a small midbrain structure that surrounds the cerebral aqueduct, regulates brain–body communication, and is often studied for its role in “fight-or-flight” and “freezing” responses to threat. We used ultra-high field 7-Tesla fMRI to resolve the PAG in humans and distinguish it from the cerebral aqueduct, examining its in vivo function in humans during a working memory task (N = 87). Relative to baseline fixation, both mild and moderate task-elicited cognitive demands elicited bilateral BOLD increases in ventrolateral PAG (vlPAG), a region previously observed to show increased activity during anticipated painful threat in both non-human and human animals. The present task posed only the most minimal (if any) “threat”. The mild-demand condition involved a task easier than remembering a phone number, elicited a heart rate decrease relative to baseline, yet nonetheless elicited a bilateral vlPAG response. Across PAG voxels, BOLD signal intensity correlated with changes in physiological reactivity (relative to baseline) and showed some evidence of spatial organization along the rostral–caudal axis. These findings suggest that the PAG may have a broader role in coordinating brain—body communication during a minimally to moderately demanding task, even in the absence of threat.
1

Functional connectome of brainstem nuclei involved in autonomic, limbic, pain and sensory processing in living humans from 7 Tesla resting state fMRI

Simone Cauzzo et al.Oct 19, 2021
Abstract Despite remarkable advances in mapping the functional connectivity of the cortex, the functional connectivity of subcortical regions is understudied in living humans. This is the case for brainstem nuclei that control vital processes, such as autonomic, limbic, nociceptive and sensory functions. This is because of the lack of precise brainstem nuclei localization, of adequate sensitivity and resolution in the deepest brain regions, as well as of optimized processing for the brainstem. To close the gap between the cortex and the brainstem, on 20 healthy subjects, we computed a correlation-based functional connectome of 15 brainstem nuclei involved in autonomic, limbic, nociceptive, and sensory function (superior and inferior colliculi, ventral tegmental area-parabrachial pigmented nucleus complex, microcellular tegmental nucleus-prabigeminal nucleus complex, lateral and medial parabrachial nuclei, vestibular and superior olivary complex, superior and inferior medullary reticular formation, viscerosensory motor nucleus, raphe magnus, pallidus, and obscurus, and parvicellular reticular nucleus – alpha part) with the rest of the brain. Specifically, we exploited 1.1mm isotropic resolution 7 Tesla resting-state fMRI, ad-hoc coregistration and physiological noise correction strategies, and a recently developed probabilistic template of brainstem nuclei. Further, we used 2.5mm isotropic resolution resting-state fMRI data acquired on a 3 Tesla scanner to assess the translatability of our results to conventional datasets. We report highly consistent correlation coefficients across subjects, confirming available literature on autonomic, limbic, nociceptive and sensory pathways, as well as high interconnectivity within the central autonomic network and the vestibular network. Interestingly, our results showed evidence of vestibulo-autonomic interactions in line with previous work. Comparison of 7 Tesla and 3 Tesla findings showed high translatability of results to conventional settings for brainstem-cortical connectivity and good yet weaker translatability for brainstem-brainstem connectivity. The brainstem functional connectome might bring new insight in the understanding of autonomic, limbic, nociceptive and sensory function in health and disease.
1

Cortical and subcortical mapping of the allostatic-interoceptive system in the human brain: replication and extension with 7 Tesla fMRI

Jiahe Zhang et al.Jul 24, 2023
Abstract The brain continuously anticipates the energetic needs of the body and prepares to meet those needs before they arise, a process called allostasis. In support of allostasis, the brain continually models the internal state of the body, a process called interoception. Using published tract-tracing studies in non-human animals as a guide, we previously identified a large-scale system supporting allostasis and interoception in the human brain with functional magnetic resonance imaging (fMRI) at 3 Tesla. In the present study, we replicated and extended this system in humans using 7 Tesla fMRI ( N = 91 ), improving the precision of subgenual and pregenual anterior cingulate topography as well as brainstem nuclei mapping. We verified over 90% of the anatomical connections in the hypothesized allostatic-interoceptive system observed in non-human animal research. We also identified functional connectivity hubs verified in tract-tracing studies but not previously detected using 3 Tesla fMRI. Finally, we demonstrated that individuals with stronger fMRI connectivity between system hubs self-reported greater interoceptive awareness, building on construct validity evidence from our earlier paper. Taken together, these results strengthen evidence for the existence of a whole-brain system supporting interoception in the service of allostasis and we consider the implications for mental and physical health. Significance Statement We used ultra-high field 7 Tesla fMRI to replicate and extend a large-scale brain system supporting interoception and allostasis, entwined processes crucial to the core brain function of coordinating and regulating the internal systems of the body. In particular, we mapped the subcortical extents of this system, several of which are small brainstem nuclei only recently delineated at 7 Tesla. Our findings suggest that investigations of distributed brain networks should not be restricted to the cerebral cortex. We emphasize bodily regulation as a whole-brain phenomenon and highlight its implications for mental and physical health.
0

Probabilistic atlas of the lateral parabrachial nucleus, medial parabrachial nucleus, vestibular nuclei complex and medullary viscero-sensory-motor nuclei complex in living humans from 7 Tesla MRI

Kavita Singh et al.Oct 25, 2019
The lateral parabrachial nucleus, medial parabrachial nucleus, vestibular nuclei complex and medullary viscero-sensory-motor nuclei complex (the latter including among others the solitary nucleus, vagus nerve nucleus, and hypoglossal nucleus) are anatomically and functionally connected brainstem gray-matter structures that convey signals across multiple modalities between the brain and the spinal cord to regulate vital bodily functions. It is remarkably difficult to precisely extrapolate the location of these nuclei from ex vivo atlases to conventional 3 Tesla in vivo images; thus, a probabilistic brainstem atlas in stereotaxic neuroimaging space in living humans is needed. We delineated these nuclei using single-subject high contrast 1.1 mm isotropic resolution 7 Tesla MRI images. After precise coregistration of nuclei labels to stereotaxic space, we generated a probabilistic atlas of their anatomical locations. Finally, we validated the nuclei labels in the atlas by assessing their inter-rater agreement, consistency across subjects and volumes. We also performed a preliminary comparison of their location and microstructural properties to histologic sections of a postmortem human brainstem specimen. In future, the resulting probabilistic atlas of these brainstem nuclei in stereotaxic space may assist researchers and clinicians in evaluating autonomic, vestibular and viscero-sensory-motor nuclei structure, function and connectivity in living humans using conventional 3 Tesla MRI scanners.