ABSTRACT Hundreds of inbred laboratory mouse strains and intercross populations have been used to functionalize genetic variants that contribute to disease. Thousands of disease relevant traits have been characterized in mice and made publicly available. New strains and populations including the Collaborative Cross, expanded BXD and inbred wild-derived strains add to set of complex disease mouse models, genetic mapping resources and sensitized backgrounds against which to evaluate engineered mutations. The genome sequences of many inbred strains, along with dense genotypes from others could allow integrated analysis of trait – variant associations across populations, but these analyses are not feasible due to the sparsity of genotypes available. Moreover, the data are not readily interoperable with other resources. To address these limitations, we created a uniformly dense data resource by harmonizing multiple variant datasets. Missing genotypes were imputed using the Viterbi algorithm with a data-driven technique that incorporates local phylogenetic information, an approach that is extensible to other model organism species. The result is a web– and programmatically-accessible data service called GenomeMUSter ( https://muster.jax.org ), comprising allelic data covering 657 strains at 106.8M segregating sites. Interoperation with phenotype databases, analytic tools and other resources enable a wealth of applications including multi-trait, multi-population meta-analysis. We demonstrate this in a cross-species comparison of the meta-analysis of Type 2 Diabetes and of substance use disorders, resulting in the more specific characterization of the role of human variant effects in light of mouse phenotype data. Other applications include refinement of mapped loci and prioritization of strain backgrounds for disease modeling to further unlock extant mouse diversity for genetic and genomic studies in health and disease.