RF
R. Furniss
Author with expertise in Global Challenge of Antibiotic Resistance in Bacteria
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(71% Open Access)
Cited by:
238
h-index:
15
/
i10-index:
18
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
13

Antibiotic potentiation and inhibition of cross-resistance in pathogens associated with cystic fibrosis

Nikol Kadeřábková et al.Aug 2, 2023
Critical Gram-negative pathogens, like Pseudomonas, Stenotrophomonas and Burkholderia, have become resistant to most antibiotics. Complex resistance profiles together with synergistic interactions between these organisms increase the likelihood of treatment failure in distinct infection settings, for example in the lungs of cystic fibrosis patients. Here, we discover that cell envelope protein homeostasis pathways underpin both antibiotic resistance and cross-protection in CF-associated bacteria. We find that inhibition of oxidative protein folding inactivates multiple species-specific resistance proteins. Using this strategy, we sensitize multi-drug resistant Pseudomonas aeruginosa to β-lactam antibiotics and demonstrate promise of new treatment avenues for the recalcitrant pathogen Stenotrophomonas maltophilia. The same approach also inhibits cross-protection between resistant S. maltophilia and susceptible P. aeruginosa, allowing eradication of both commonly co-occurring CF-associated organisms. Our results provide the basis for the development of next-generation strategies that target antibiotic resistance, while also impairing specific interbacterial interactions that enhance the severity of polymicrobial infections.
13
Citation3
0
Save
1

Colistin resistance in Escherichia coli confers protection of the cytoplasmic but not outer membrane from the polymyxin antibiotic

Madeleine Humphrey et al.Jul 21, 2021
Abstract Colistin is a polymyxin antibiotic of last resort for the treatment of infections caused by multi-drug resistant Gram-negative bacteria. By targeting lipopolysaccharide (LPS), the antibiotic disrupts both the outer and cytoplasmic membranes, leading to lysis and bacterial death. Colistin resistance in Escherichia coli occurs via mutations in the chromosome or the acquisition of mobilised colistin resistance ( mcr ) genes. Both these colistin resistance mechanisms result in chemical modifications to the LPS, with positively charged moieties added at the cytoplasmic membrane before the LPS is transported to the outer membrane. We have previously shown that MCR-1-mediated LPS modification protects the cytoplasmic but not the outer membrane from damage caused by colistin, enabling bacterial survival. However, it remains unclear whether this observation extends to colistin resistance conferred by other mcr genes, or resistance due to chromosomal mutations. Using a panel of clinical E. coli that had acquired mcr -1, -1.5, -2, -3, -3.2 or -5, or had acquired polymyxin resistance independently of mcr genes, we found that almost all isolates were susceptible to colistin-mediated permeabilisation of the outer, but not cytoplasmic, membrane. Furthermore, we showed that permeabilisation of the outer membrane of colistin resistant isolates by the polymyxin is in turn sufficient to sensitise bacteria to the antibiotic rifampicin, which normally cannot cross the LPS monolayer. These findings demonstrate that colistin resistance in E. coli is typically due to protection of the cytoplasmic but not outer membrane from colistin-mediated damage, regardless of the mechanism of resistance.
1

Breaking antimicrobial resistance by disrupting extracytoplasmic protein folding

R. Furniss et al.Aug 28, 2021
ABSTRACT Antimicrobial resistance in Gram-negative bacteria is one of the greatest threats to global health. New antibacterial strategies are urgently needed, and the development of antibiotic adjuvants that either neutralize resistance proteins or compromise the integrity of the cell envelope is of ever-growing interest. Most available adjuvants are only effective against specific resistance proteins. Here we demonstrate that disruption of cell envelope protein homeostasis simultaneously compromises several classes of resistance determinants. In particular, we find that impairing DsbA-mediated disulfide bond formation incapacitates diverse β-lactamases and destabilizes mobile colistin resistance enzymes. Furthermore, we show that chemical inhibition of DsbA sensitizes multidrug-resistant clinical isolates to existing antibiotics and that the absence of DsbA, in combination with antibiotic treatment, substantially increases the survival of Galleria mellonella larvae infected with multidrug- resistant Pseudomonas aeruginosa . This work lays the foundation for the development of novel antibiotic adjuvants that function as broad-acting resistance breakers. IMPACT STATEMENT Disruption of disulfide bond formation sensitizes resistant Gram- negative bacteria expressing β-lactamases and mobile colistin resistance enzymes to currently available antibiotics.
1

Novel structural components generate distinct type VI secretion system anchoring modes

Patricia Bernal et al.Apr 30, 2020
ABSTRACT The type VI secretion system (T6SS) is a phage-derived contractile nanomachine primarily involved in interbacterial competition. Its pivotal component, TssA, is indispensable for the assembly of the T6SS sheath structure, the contraction of which propels a payload of effector proteins into neighboring cells. Despite their key function, TssA proteins exhibit unexpected diversity and exist in two major forms, a short (TssA S ) and a long (TssA L ) TssA. Whilst TssA L proteins interact with a partner, called TagA, to anchor the distal end of the extended sheath, the mechanism for the stabilization of TssA S -containing T6SSs remains unknown. Here we discover a novel class of structural components that interact with short TssA proteins and contribute to T6SS assembly by stabilizing the polymerizing sheath from the baseplate. We demonstrate that the presence of these components is important for full sheath extension and optimal firing. Moreover, we show that the pairing of each form of TssA with a different class of sheath stabilization proteins results in T6SS apparatuses that either reside in the cell for a while or fire immediately after sheath extension, thus giving rise to different aggression behaviors. We propose that this functional diversity could contribute to the specialization of the T6SS to suit bacterial lifestyles in diverse environmental niches.
0

Fast and robust detection of colistin resistance in Escherichia coli using the MALDI Biotyper Sirius mass spectrometry system

R. Furniss et al.Aug 30, 2019
Polymyxin antibiotics are a last-line treatment for multidrug-resistant Gram-negative bacteria. However, the emergence of colistin resistance, including the spread of mobile mcr genes, necessitates the development of improved diagnostics for the detection of colistin-resistant organisms in hospital settings. The recently developed MALDIxin test enables detection of colistin resistance by MALDI-TOF mass spectrometry in less than 15 minutes but is not optimized for the mass spectrometers commonly found in clinical microbiology laboratories. In this study, we adapted the MALDIxin test for the MALDI Biotyper Sirius MALDI-TOF mass spectrometry system (Bruker Daltonics). We optimized the sample preparation protocol using a set of 6 MCR-expressing Escherichia coli clones and validated the assay with a collection of 40 E. coli clinical isolates, including 19 MCR producers, 12 chromosomally-resistant isolates and 9 polymyxin-susceptible isolates. We calculated Polymyxin resistance ratio (PRR) values from the acquired spectra; a PRR value of zero, indicating polymyxin susceptibility, was obtained for all colistin-susceptible E. coli isolates, whereas positive PRR values, indicating resistance to polymyxins, were obtained for all resistant strains independent of the genetic basis of resistance. Thus, we report a preliminary feasibility study showing that an optimized version of the MALDIxin test, adapted for the routine MALDI Biotyper Sirius, provides an unbiased, fast, reliable, cost-effective and high-throughput way of detecting colistin resistance in clinical E. coli isolates.