LV
Luis Valentin-Alvarado
Author with expertise in RNA Sequencing Data Analysis
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
11
(91% Open Access)
Cited by:
82
h-index:
9
/
i10-index:
9
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
595

Borgs are giant extrachromosomal elements with the potential to augment methane oxidation

Basem Al-Shayeb et al.Jul 10, 2021
Summary Anaerobic methane oxidation exerts a key control on greenhouse gas emissions 1 , yet factors that modulate the activity of microorganisms performing this function remain little explored. In studying groundwater, sediments, and wetland soil where methane production and oxidation occur, we discovered extraordinarily large, diverse DNA sequences that primarily encode hypothetical proteins. Four curated, complete genomes are linear, up to ~1 Mbp in length and share genome organization, including replicore structure, long inverted terminal repeats, and genome-wide unique perfect tandem direct repeats that are intergenic or generate amino acid repeats. We infer that these are a new type of archaeal extrachromosomal element with a distinct evolutionary origin. Gene sequence similarity, phylogeny, and local divergence of sequence composition indicate that many of their genes were assimilated from methane-oxidizing Methanoperedens archaea. We refer to these elements as “Borgs”. We identified at least 19 different Borg types coexisting with Methanoperedens in four distinct ecosystems. Borg genes expand redox and respiratory capacity (e.g., clusters of multiheme cytochromes), ability to respond to changing environmental conditions, and likely augment Methanoperedens capacity for methane oxidation (e.g., methyl coenzyme M reductase). By this process, Borgs could play a previously unrecognized role in controlling greenhouse gas emissions.
595
Citation12
0
Save
54

Patterns of gene content and co-occurrence constrain the evolutionary path toward animal association in CPR bacteria

Patrick West et al.Mar 3, 2021
ABSTRACT Candidate Phyla Radiation (CPR) bacteria are small, likely episymbiotic organisms found across Earth’s ecosystems. Despite their prevalence, the distribution of CPR lineages across habitats and the genomic signatures of transitions amongst these habitats remain unclear. Here, we expand the genome inventory for Absconditabacteria (SR1), Gracilibacteria, and Saccharibacteria (TM7), CPR bacteria known to occur in both animal-associated and environmental microbiomes, and investigate variation in gene content with habitat of origin. By overlaying phylogeny with habitat information, we show that bacteria from these three lineages have undergone multiple transitions from environmental habitats into animal microbiomes. Based on co-occurrence analyses of hundreds of metagenomes, we extend the prior suggestion that certain Saccharibacteria have broad bacterial host ranges and constrain possible host relationships for Absconditabacteria and Gracilibacteria. Full-proteome analyses show that animal-associated Saccharibacteria have smaller gene repertoires than their environmental counterparts and are enriched in numerous protein families, including those likely functioning in amino acid metabolism, phage defense, and detoxification of peroxide. In contrast, some freshwater Saccharibacteria encode a putative rhodopsin. For protein families exhibiting the clearest patterns of differential habitat distribution, we compared protein and species phylogenies to estimate the incidence of lateral gene transfer and genomic loss occurring over the species tree. These analyses suggest that habitat transitions were likely not accompanied by large transfer or loss events, but rather were associated with continuous proteome remodeling. Thus, we speculate that CPR habitat transitions were driven largely by availability of suitable host taxa, and were reinforced by acquisition and loss of some capacities. IMPORTANCE Studying the genetic differences between related microorganisms from different environment types can indicate factors associated with their movement among habitats. This is particularly interesting for bacteria from the Candidate Phyla Radiation because their minimal metabolic capabilities require symbiotic associations with microbial hosts. We found that shifts of Absconditabacteria, Gracilibacteria, and Saccharibacteria between environmental ecosystems and mammalian mouths/guts probably did not involve major episodes of gene gain and loss; rather, gradual genomic change likely followed habitat migration. The results inform our understanding of how little-known microorganisms establish in the human microbiota where they may ultimately impact health.
54
Citation7
0
Save
32

Autotrophic biofilms sustained by deeply-sourced groundwater host diverse CPR bacteria implicated in sulfur and hydrogen metabolism

Luis Valentin-Alvarado et al.Nov 17, 2022
Abstract Background Candidate Phyla Radiation (CPR) bacteria are commonly detected yet enigmatic members of diverse microbial communities. Their host associations, metabolic capabilities, and potential roles in biogeochemical cycles remain under-explored. We studied chemoautotrophically-based biofilms that host diverse CPR bacteria and grow in sulfide-rich springs using bulk geochemical analysis, genome-resolved metagenomics and scanning transmission x-ray microscopy (STXM) at room temperature and 87° K. Results CPR-affiliated Gracilibacteria, Absconditabacteria, Saccharibacteria, Peregrinibacteria, Berkelbacteria, Microgenomates, and Parcubacteria are members of two biofilm communities dominated by chemolithotrophic sulfur-oxidizing bacteria including Thiothrix or Beggiatoa . STXM imaging revealed ultra-small cells along the surfaces of filamentous bacteria that we interpret are CPR bacterial episymbionts. STXM and NEXAFS spectroscopy at carbon K and sulfur L 2,3 edges show protein-encapsulated elemental sulfur spherical granules associated with filamentous bacteria, indicating that they are sulfur-oxidizers, likely Thiothrix . Berkelbacteria and Moranbacteria in the same biofilm sample are predicted to have a novel electron bifurcating group 3b [NiFe]-hydrogenase, putatively a sulfhydrogenase, potentially linked to sulfur metabolism via redox cofactors. This complex could potentially underpin a symbiosis involving Berkelbacteria and/or Moranbacteria and filamentous sulfur-oxidizing bacteria such as Thiothrix that is based on cryptic sulfur cycling. One Doudnabacteria genome encodes adjacent sulfur dioxygenase and rhodanese genes that may convert thiosulfate to sulfite. We find similar conserved genomic architecture associated with CPR bacteria from other sulfur-rich subsurface ecosystems. Conclusions Our combined metagenomic, geochemical, spectromicroscopic and structural bioinformatics analyses link some CPR bacteria to sulfur-oxidizing Proteobacteria, likely Thiothrix , and indicate roles for CPR bacteria in sulfur and hydrogen cycling.
32
Citation6
0
Save
0

Giant genes are rare but implicated in cell wall degradation by predatory bacteria

Jacob West-Roberts et al.Nov 22, 2023
Abstract Across the tree of life, gene lengths vary, but most are no more than a few thousand base pairs in length. The largest protein often reported is the ∼40,000 aa eukaryotic Titin. Even larger proteins may occur in the rapidly expanding set of metagenome-derived sequences, but their existence may be obscured by assembly fragmentation. Here, we leverage genome curation to complete metagenome-derived sequences that encode predicted proteins of up to 85,804 aa. Overall, the findings illuminate a huge knowledge gap related to giant proteins. Although predicted proteins of >30,000 aa occur in bacterial phyla such as Firmicutes and Actinobacteria , they are most common in ca. Omnitrophota, ultra small bacteria that adopt predatory lifestyles. All full length giant genes encode numerous transmembrane regions and most encode divergent secA DEAD helicase domains. In silico structural prediction of protein subregions was required to identify domains in unannotated protein segments, and revealed putative domains implicated in attachment and carbohydrate degradation. Many giant genes in new complete and near-complete Omnitrophota genomes occur in close proximity to genes homologous to type II secretion systems as well as carbohydrate import systems. This, in combination with the domain content, suggests that many bacterial giant proteins enable prey adhesion and cell wall digestion during bacterial predation.
0
Citation3
0
Save
1

A widely distributed genus of soil Acidobacteria genomically enriched in biosynthetic gene clusters

Alexander Crits‐Christoph et al.May 11, 2021
Abstract Bacteria of the phylum Acidobacteria are one of the most abundant bacterial across soil ecosystems, yet they are represented by comparatively few sequenced genomes, leaving gaps in our understanding of their metabolic diversity. Recently, genomes of Acidobacteria species with unusually large repertoires of biosynthetic gene clusters (BGCs) were reconstructed from grassland soil metagenomes, but the degree to which these species are widespread is still unknown. To investigate this, we augmented a dataset of publicly available Acidobacteria genomes with 46 metagenome-assembled genomes recovered from permanently saturated organic-rich soils of a vernal (spring) pool ecosystem in Northern California. We recovered high quality genomes for three novel species from Candidatus Angelobacter (a proposed subdivision 1 Acidobacterial genus), a genus that is genomically enriched in genes for specialized metabolite biosynthesis. Acidobacteria were particularly abundant in the vernal pool sediments, and a Ca . Angelobacter species was the most abundant bacterial species detected in some samples. We identified numerous diverse biosynthetic gene clusters in these genomes, and also in additional genomes from other publicly available soil metagenomes for other related Ca . Angelobacter species. Metabolic analysis indicates that Ca . Angelobacter likely are aerobes that ferment organic carbon, with potential to contribute to carbon compound turnover in soils. Using metatranscriptomics, we identified in situ expression of specialized metabolic traits for two species from this genus. In conclusion, we expand genomic sampling of the uncultivated Ca . Angelobacter, and show that they represent common and sometimes highly abundant members of dry and saturated soil communities, with a high degree of capacity for synthesis of diverse specialized metabolites.
1
Citation3
0
Save
0

Characterization of sediment and granite hosted deep underground research laboratories reveals diverse microbiome functions, limited temporal variation and substantial genomic conservation

Yuki Amano et al.Mar 28, 2024
Underground research laboratories (URLs) provide a window on the deep biosphere and enable investigation of potential microbial impacts on nuclear waste, CO2 and H2 stored in the subsurface. We carried out the first multi-year study of groundwater microbiomes sampled from defined intervals between 140 and 400 m below the surface of the Horonobe and Mizunami URLs, Japan. We reconstructed draft genomes for >90% of all organisms detected over a four year period. The Horonobe and Mizunami microbiomes are dissimilar, likely because the Mizunami URL is hosted in granitic rock and the Horonobe URL in sedimentary rock. Despite this, hydrogen metabolism, rubisco-based CO2 fixation, reduction of nitrogen compounds and sulfate reduction are well represented functions in microbiomes from both URLs, although methane metabolism is more prevalent at the organic- and CO2-rich Horonobe URL. High fluid flow zones and proximity to subsurface tunnels select for candidate phyla radiation bacteria in the Mizunami URL. We detected near-identical genotypes for approximately one third of all genomically defined organisms at multiple depths within the Horonobe URL. This cannot be explained by inactivity, as in situ growth was detected for some bacteria, albeit at slow rates. Given the current low hydraulic conductivity and groundwater compositional heterogeneity, ongoing inter-site strain dispersal seems unlikely. Alternatively, the Horonobe URL microbiome homogeneity may be explained by higher groundwater mobility during the last glacial period. Genotypically-defined species closely related to those detected in the URLs were identified in three other subsurface environments in the USA. Thus, dispersal rates between widely separated underground sites may be fast enough relative to mutation rates to have precluded substantial divergence in species composition. Species overlaps between subsurface locations on different continents constrain expectations regarding the scale of global subsurface biodiversity. Overall, microbiome and geochemical stability over the study period has important implications for underground storage applications.
0
0
Save
0

Genetic elements and defense systems drive diversification and evolution in Asgard archaea

Luis Valentin-Alvarado et al.Mar 23, 2024
Abstract Asgard Archaea are of great interest as the progenitors of Eukaryotes, but little is known about the mobile genetic elements (MGEs) that may shape their ongoing evolution. Here, we describe MGEs that replicate in Atabeyarchaeia, wetland Asgard archaea phylum represented by two complete genomes. We used soil depth-resolved population metagenomic datasets to track 18 MGEs for which genome structures were defined and precise chromosome integration sites could be identified for confident host linkage. Additionally, we identified a complete 20.67 kilobase pair (kbp) circular plasmid (the first reported for Asgard archaea) and two groups of viruses linked to Atabeyarchaeia, via CRISPR spacer targeting. Closely related 40 kbp viruses possess a hypervariable genomic region encoding combinations of specific genes for small cysteine-rich proteins structurally similar to restriction-homing endonucleases. One 10.9 kbp circularizable plasmid-like MGE integrates genomically into an Atabeyarchaeia chromosome and has a 2.5 kbp circularizable element integrated within it. The 10.9 kbp MGE encodes a highly expressed methylase with a sequence specificity matching an active methylation motif identified by PacBio sequencing. Restriction-modification of Atabeyarchaeia differs from that of another coexisting Asgard archaea Freyarchaeia which has few identified MGEs but possesses diverse defense mechanisms, including DISARM and Hachiman not found in Atabeyarchaeia. Overall, defense systems and methylation mechanisms of Asgard archaea likely modulate their interactions with MGEs, and integration/excision and copy number variation of MGEs in turn enable host genetic versatility.