YZ
Yongxin Zhao
Author with expertise in Fluorescence Microscopy Techniques
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(88% Open Access)
Cited by:
2,524
h-index:
29
/
i10-index:
42
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

An Expanded Palette of Genetically Encoded Ca 2+ Indicators

Yongxin Zhao et al.Sep 9, 2011
+8
J
S
Y
Directed protein evolution provides a series of fluorescent protein-based indicators for multicolor Ca2 + imaging.
0
Citation1,223
0
Save
1

All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins

Daniel Hochbaum et al.Jun 22, 2014
+19
S
Y
D
A combination of a sensitive blue light–gated channelrhodopsin actuator and red-shifted Arch-based voltage sensors allows all-optical electrophysiology without cross-talk in cultured neurons or brain slices. All-optical electrophysiology—spatially resolved simultaneous optical perturbation and measurement of membrane voltage—would open new vistas in neuroscience research. We evolved two archaerhodopsin-based voltage indicators, QuasAr1 and QuasAr2, which show improved brightness and voltage sensitivity, have microsecond response times and produce no photocurrent. We engineered a channelrhodopsin actuator, CheRiff, which shows high light sensitivity and rapid kinetics and is spectrally orthogonal to the QuasArs. A coexpression vector, Optopatch, enabled cross-talk–free genetically targeted all-optical electrophysiology. In cultured rat neurons, we combined Optopatch with patterned optical excitation to probe back-propagating action potentials (APs) in dendritic spines, synaptic transmission, subcellular microsecond-timescale details of AP propagation, and simultaneous firing of many neurons in a network. Optopatch measurements revealed homeostatic tuning of intrinsic excitability in human stem cell–derived neurons. In rat brain slices, Optopatch induced and reported APs and subthreshold events with high signal-to-noise ratios. The Optopatch platform enables high-throughput, spatially resolved electrophysiology without the use of conventional electrodes.
1
Citation719
1
Save
0

Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies

Paul Tillberg et al.Jul 4, 2016
+15
K
F
P
Improved expansion microscopy method preserves signal from fluorescent proteins and antibodies using off-the-shelf reagents. Expansion microscopy (ExM) enables imaging of preserved specimens with nanoscale precision on diffraction-limited instead of specialized super-resolution microscopes. ExM works by physically separating fluorescent probes after anchoring them to a swellable gel. The first ExM method did not result in the retention of native proteins in the gel and relied on custom-made reagents that are not widely available. Here we describe protein retention ExM (proExM), a variant of ExM in which proteins are anchored to the swellable gel, allowing the use of conventional fluorescently labeled antibodies and streptavidin, and fluorescent proteins. We validated and demonstrated the utility of proExM for multicolor super-resolution (∼70 nm) imaging of cells and mammalian tissues on conventional microscopes.
1

Decrowding Expansion Pathology: Unmasking Previously Invisible Nanostructures and Cells in Intact Human Brain Pathology Specimens

Pablo Valdés et al.Dec 7, 2021
+10
C
B
P
Abstract Proteins are densely packed in cells and tissues, where they form complex nanostructures. Expansion microscopy (ExM) variants have been used to separate proteins from each other in preserved biospecimens, improving antibody access to epitopes. Here we present an ExM variant, decrowding expansion pathology (dExPath), which can expand proteins away from each other in human brain pathology specimens, including formalin-fixed paraffin-embedded (FFPE) clinical specimens. Immunostaining of dExPath-expanded specimens reveals, with nanoscale precision, previously unobserved cellular structures, as well as more continuous patterns of staining. This enhanced molecular staining results in observation of previously invisible disease marker-positive cell populations in human glioma specimens, with potential implications for tumor aggressiveness. dExPath results in improved fluorescence signals even as it eliminates lipofuscin-associated autofluorescence. Thus, this form of expansion-mediated protein decrowding may, through improved epitope access for antibodies, render immunohistochemistry more powerful in clinical science and diagnosis.
1
Citation10
0
Save
0

Cortical Column and Whole Brain Imaging of Neural Circuits with Molecular Contrast and Nanoscale Resolution

Ruixuan Gao et al.Jul 23, 2018
+26
T
S
R
Abstract Optical and electron microscopy have made tremendous inroads in understanding the complexity of the brain, but the former offers insufficient resolution to reveal subcellular details and the latter lacks the throughput and molecular contrast to visualize specific molecular constituents over mm-scale or larger dimensions. We combined expansion microscopy and lattice light sheet microscopy to image the nanoscale spatial relationships between proteins across the thickness of the mouse cortex or the entire Drosophila brain, including synaptic proteins at dendritic spines, myelination along axons, and presynaptic densities at dopaminergic neurons in every fly neuropil domain. The technology should enable statistically rich, large scale studies of neural development, sexual dimorphism, degree of stereotypy, and structural correlations to behavior or neural activity, all with molecular contrast. One Sentence Summary Combined expansion and lattice light sheet microscopy enables high speed, nanoscale molecular imaging of neural circuits over large volumes.
0
Citation5
0
Save
1

Super-resolution vibrational imaging using expansion stimulated Raman scattering microscopy

Lixue Shi et al.Dec 23, 2021
+7
B
A
L
Abstract Stimulated Raman scattering (SRS) microscopy is an emerging technology that provides high chemical specificity for endogenous biomolecules and can circumvent common constraints of fluorescence microscopy including limited capabilities to probe small biomolecules and difficulty resolving many colors simultaneously due to spectral overlap. However, the resolution of SRS microscopy remains governed by the diffraction limit. To overcome this, we describe a new technique called Molecule Anchorable Gel-enabled Nanoscale Imaging of Fluorescence and stImulatEd Raman Scattering microscopy (MAGNIFIERS), that integrates SRS microscopy with expansion microscopy (ExM). ExM is a powerful strategy providing significant improvement in imaging resolution by physical magnification of hydrogel-embedded preserved biological specimens. MAGNIFIERS offers chemical-specific nanoscale imaging with sub-50 nm resolution and has scalable multiplexity when combined with multiplex Raman probes and fluorescent labels. We used MAGNIFIERS to visualize nanoscale features in a label-free manner with C-H vibration of proteins, lipids and DNA in a broad range of biological specimens, from mouse brain, liver and kidney to human lung organoid. In addition, we applied MAGNIFIERS to track nanoscale features of protein synthesis in protein aggregates using metabolic labeling of small metabolites. Finally, we used MAGNIFIERS to demonstrate 8-color nanoscale imaging in an expanded mouse brain section. Overall, MAGNIFIERS is a valuable platform for super-resolution label-free chemical imaging, high-resolution metabolic imaging, and highly multiplexed nanoscale imaging, thus bringing SRS to nanoscopy.
0

All-optical electrophysiology reveals brain-state dependent changes in hippocampal subthreshold dynamics and excitability

Yoav Adam et al.Mar 13, 2018
+15
S
J
Y
A technology to record membrane potential from multiple neurons, simultaneously, in behaving animals will have a transformative impact on neuroscience research. Parallel recordings could reveal the subthreshold potentials and intercellular correlations that underlie network behavior. Paired stimulation and recording can further reveal the input-output properties of individual cells or networks in the context of different brain states. Genetically encoded voltage indicators are a promising tool for these purposes, but were so far limited to single-cell recordings with marginal signal to noise ratio (SNR) in vivo. We developed improved near infrared voltage indicators, high speed microscopes and targeted gene expression schemes which enabled recordings of supra- and subthreshold voltage dynamics from multiple neurons simultaneously in mouse hippocampus, in vivo. The reporters revealed sub-cellular details of back-propagating action potentials, correlations in sub-threshold voltage between multiple cells, and changes in dynamics associated with transitions from resting to locomotion. In combination with optogenetic stimulation, the reporters revealed brain state-dependent changes in neuronal excitability, reflecting the interplay of excitatory and inhibitory synaptic inputs. These tools open the possibility for detailed explorations of network dynamics in the context of behavior.
0

An Omni-Mesoscope for multiscale high-throughput quantitative phase imaging of cellular dynamics and high-content molecular characterization

Hongqiang Ma et al.Jul 19, 2024
+2
J
M
H
Abstract The mesoscope has emerged as a powerful imaging tool in biomedical research, yet its high cost and low resolution have limited its broader application. Here, we introduce the Omni-Mesoscope, a cost-effective high-spatial-temporal, multimodal, and multiplex mesoscopic imaging platform built from cost-efficient off-the-shelf components. This system uniquely merges the capabilities of quantitative phase microscopy to capture live-cell dynamics over a large cell population with highly multiplexed fluorescence imaging for comprehensive molecular characterization. This integration facilitates simultaneous tracking of live-cell morphodynamics across thousands of cells, alongside high-content molecular analysis at the single-cell level. Furthermore, the Omni-Mesoscope offers a mesoscale field of view of approximately 5 mm 2 with a high spatial resolution down to 700 nm, enabling the capture of information-rich images with detailed sub-cellular features. We demonstrate such capability in delineating molecular characteristics underlying rare dynamic cellular phenomena, such as cancer cell responses to chemotherapy and the emergence of polyploidy in drug-resistant cells. Moreover, the cost-effectiveness and the simplicity of our Omni-Mesoscope democratizes mesoscopic imaging, making it accessible across diverse biomedical research fields. To further demonstrate its versatility, we integrate expansion microscopy to enhance 3D volumetric super-resolution imaging of thicker tissues, opening new avenues for biological exploration at unprecedented scales and resolutions.