JB
Juan Bustillo
Author with expertise in Analysis of Brain Functional Connectivity Networks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
17
(65% Open Access)
Cited by:
1,878
h-index:
61
/
i10-index:
154
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A Baseline for the Multivariate Comparison of Resting-State Networks

Elena Allen et al.Jan 1, 2011
As the size of functional and structural MRI datasets expands, it becomes increasingly important to establish a baseline from which diagnostic relevance may be determined, a processing strategy that efficiently prepares data for analysis, and a statistical approach that identifies important effects in a manner that is both robust and reproducible. In this paper, we introduce a multivariate analytic approach that optimizes sensitivity and reduces unnecessary testing. We demonstrate the utility of this mega-analytic approach by identifying the effects of age and gender on the resting-state networks (RSNs) of 603 healthy adolescents and adults (mean age: 23.4 years, range: 12-71 years). Data were collected on the same scanner, preprocessed using an automated analysis pipeline based in SPM, and studied using group independent component analysis. RSNs were identified and evaluated in terms of three primary outcome measures: time course spectral power, spatial map intensity, and functional network connectivity. Results revealed robust effects of age on all three outcome measures, largely indicating decreases in network coherence and connectivity with increasing age. Gender effects were of smaller magnitude but suggested stronger intra-network connectivity in females and more inter-network connectivity in males, particularly with regard to sensorimotor networks. These findings, along with the analysis approach and statistical framework described here, provide a useful baseline for future investigations of brain networks in health and disease.
0

Widespread white matter microstructural differences in schizophrenia across 4322 individuals: results from the ENIGMA Schizophrenia DTI Working Group

Sinéad Kelly et al.Oct 17, 2017
The regional distribution of white matter (WM) abnormalities in schizophrenia remains poorly understood, and reported disease effects on the brain vary widely between studies. In an effort to identify commonalities across studies, we perform what we believe is the first ever large-scale coordinated study of WM microstructural differences in schizophrenia. Our analysis consisted of 2359 healthy controls and 1963 schizophrenia patients from 29 independent international studies; we harmonized the processing and statistical analyses of diffusion tensor imaging (DTI) data across sites and meta-analyzed effects across studies. Significant reductions in fractional anisotropy (FA) in schizophrenia patients were widespread, and detected in 20 of 25 regions of interest within a WM skeleton representing all major WM fasciculi. Effect sizes varied by region, peaking at (d=0.42) for the entire WM skeleton, driven more by peripheral areas as opposed to the core WM where regions of interest were defined. The anterior corona radiata (d=0.40) and corpus callosum (d=0.39), specifically its body (d=0.39) and genu (d=0.37), showed greatest effects. Significant decreases, to lesser degrees, were observed in almost all regions analyzed. Larger effect sizes were observed for FA than diffusivity measures; significantly higher mean and radial diffusivity was observed for schizophrenia patients compared with controls. No significant effects of age at onset of schizophrenia or medication dosage were detected. As the largest coordinated analysis of WM differences in a psychiatric disorder to date, the present study provides a robust profile of widespread WM abnormalities in schizophrenia patients worldwide. Interactive three-dimensional visualization of the results is available at www.enigma-viewer.org .
0

Genetic Determinants of Cortical Structure (Thickness, Surface Area and Volumes) among Disease Free Adults in the CHARGE Consortium

Ivana Kolčić et al.Sep 9, 2018
Abstract Cortical thickness, surface area and volumes (MRI cortical measures) vary with age and cognitive function, and in neurological and psychiatric diseases. We examined heritability, genetic correlations and genome-wide associations of cortical measures across the whole cortex, and in 34 anatomically predefined regions. Our discovery sample comprised 22,822 individuals from 20 cohorts within the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium and the United Kingdom Biobank. Significant associations were replicated in the Enhancing Neuroimaging Genetics through Meta-analysis (ENIGMA) consortium, and their biological implications explored using bioinformatic annotation and pathway analyses. We identified genetic heterogeneity between cortical measures and brain regions, and 161 genome-wide significant associations pointing to wnt/β-catenin, TGF-β and sonic hedgehog pathways. There was enrichment for genes involved in anthropometric traits, hindbrain development, vascular and neurodegenerative disease and psychiatric conditions. These data are a rich resource for studies of the biological mechanisms behind cortical development and aging.
0
Citation24
0
Save
13

Canonical and Replicable Multi-Scale Intrinsic Connectivity Networks in 100k+ Resting-State fMRI Datasets

Armin Iraji et al.Sep 5, 2022
Abstract Resting-state functional magnetic resonance imaging (rsfMRI) has shown considerable promise for improving our understanding of brain function and characterizing various mental and cognitive states in the healthy and disordered brain. However, the lack of accurate and precise estimations of comparable functional patterns across datasets, individuals, and ever-changing brain states in a way that captures both individual variation and inter-subject correspondence limits the clinical utility of rsfMRI and its application to single-subject analyses. We posit that using reliable network templates and advanced group-informed network estimation approaches to accurately and precisely obtain individualized (dynamic) networks that retain cross-subject correspondence while maintaining subject-specific information is one potential solution to overcome the aforementioned barrier when considering cross-study comparability, independence of subject-level estimates, the limited data available in single studies, and the low signal-to-noise ratio (SNR) of rsfMRI. Toward this goal, we first obtained a reliable and replicable network template. We combined rsfMRI data of over 100k individuals across private and public datasets and selected around 58k that meet quality control (QC) criteria. We then applied multi-model-order independent component analysis (ICA) and subsampling to obtain reliable canonical intrinsic connectivity networks (ICNs) across multiple spatial scales. The selected ICNs (i.e., network templates) were also successfully replicated by independently analyzing the data that did not pass the QC criteria, highlighting the robustness of our adaptive template to data quality. We next studied the feasibility of estimating the corresponding subject-specific ICNs using a multivariate-spatially constrained ICA as an example of group-informed network estimation approaches. The results highlight that several factors, including ICNs themselves, data length, and spatial resolution, play key roles in successfully estimating the ICNs at the subject level. Large-scale ICNs, in general, require less data to achieve a specific level of spatial similarity with their templates (as well as within- and between-subject spatial similarity). Moreover, increasing data length can reduce an ICN’s subject-level specificity, suggesting longer scans might not always be desirable. We also show spatial smoothing can alter results, and the positive linear relationship we observed between data length and spatial smoothness (we posit that it is at least partially due to averaging over intrinsic dynamics or individual variation) indicates the importance of considering this factor in studies such as those focused on optimizing data length. Finally, the consistency in the spatial similarity between ICNs estimated using the full-length of data and subset of it across different data lengths may suggest that the lower within-subject spatial similarity in shorter data lengths is not necessarily only defined by lower reliability in ICN estimates; rather, it can also be an indication of brain dynamics (i.e., different subsets of data may reflect different ICN dynamics), and as we increase the data length, the result approaches the average (also known as static) ICN pattern, and therefore loses its distinctiveness.
5

Nonlinear Functional Network Connectivity in Resting Fmri Data

Sara Motlaghian et al.Jul 21, 2021
ABSTRACT In this work, we focus on explicitly nonlinear relationships in functional networks. We introduce a technique using normalized mutual information (MI), that calculates the nonlinear correlation between different brain regions. We demonstrate our proposed approach using simulated data, then apply it to a dataset previously studied in (Damaraju et al., 2014). This resting-state fMRI data included 151 schizophrenia patients and 163 age- and gender-matched healthy controls. We first decomposed these data using group independent component analysis (ICA) and yielded 47 functionally relevant intrinsic connectivity networks. Our analysis showed a modularized nonlinear relationship among brain functional networks that was particularly noticeable in the sensory and visual cortex. Interestingly, the modularity appears both meaningful and distinct from that revealed by the linear approach. Group analysis identified significant differences in nonlinear dependencies between schizophrenia patients and healthy controls particularly in visual cortex, with controls showing more nonlinearity in most cases. Certain domains, including cognitive control, and default mode, appeared much less nonlinear, whereas links between the visual and other domains showed evidence of substantial nonlinear and modular properties. Overall, these results suggest that quantifying nonlinear dependencies of functional connectivity may provide a complementary and potentially important tool for studying brain function by exposing relevant variation that is typically ignored. Further, we propose a method that captures both linear and nonlinear effects in a ‘boosted’ approach. This method increases the sensitivity to group differences in comparison to the standard linear approach, at the cost of being unable to separate linear and nonlinear effects.
5
Citation7
0
Save
1

Alterations in grey matter structure linked to frequency-specific cortico-subcortical connectivity in schizophrenia via multimodal data fusion

Marlena Duda et al.Jul 6, 2023
Schizophrenia (SZ) is a complex psychiatric disorder that is currently defined by symptomatic and behavioral, rather than biological, criteria. Neuroimaging is an appealing avenue for SZ biomarker development, as several neuroimaging-based studies comparing individuals with SZ to healthy controls (HC) have shown measurable group differences in brain structure, as well as functional brain alterations in both static and dynamic functional network connectivity (sFNC and dFNC, respectively). The recently proposed filter-banked connectivity (FBC) method extends the standard dFNC sliding-window approach to estimate FNC within an arbitrary number of distinct frequency bands. The initial implementation used a set of filters spanning the full connectivity spectral range, providing a unified approach to examine both sFNC and dFNC in a single analysis. Initial FBC results found that individuals with SZ spend more time in a less structured, more disconnected low-frequency (i.e., static) FNC state than HC, as well as preferential SZ occupancy in high-frequency connectivity states, suggesting a frequency-specific component underpinning the functional dysconnectivity observed in SZ. Building on these findings, we sought to link such frequency-specific patterns of FNC to covarying data-driven structural brain networks in the context of SZ. Specifically, we employ a multi-set canonical correlation analysis + joint independent components analysis (mCCA + jICA) data fusion framework to study the connection between grey matter volume (GMV) maps and FBC states across the full connectivity frequency spectrum. Our multimodal analysis identified two joint sources that captured co-varying patterns of frequency-specific functional connectivity and alterations in GMV with significant group differences in loading parameters between the SZ group and HC. The first joint source linked frequency-modulated connections between the subcortical and sensorimotor networks and GMV alterations in the frontal and temporal lobes, while the second joint source identified a relationship between low-frequency cerebellar-sensorimotor connectivity and structural changes in both the cerebellum and motor cortex. Together, these results show a strong connection between cortico-subcortical functional connectivity at both high and low frequencies and alterations in cortical GMV that may be relevant to the pathogenesis and pathophysiology of SZ.
12

Explicitly Nonlinear Dynamic Functional Network Connectivity In Resting-State fMRI Data

Sara Motlaghian et al.Jun 26, 2022
ABSTRACT Most dynamic functional connectivity in fMRI data is focused on linear correlations, and to our knowledge, no study has studied whole brain explicitly nonlinear dynamic relationships within the data. While some approaches have attempted to study overall connectivity more generally using flexible models, we are particularly interested in whether the non-linear relationships, above and beyond linear, are capturing unique information. This study thus proposes an approach to assess the explicitly nonlinear dynamic functional network connectivity derived from the relationship among independent component analysis time courses. Linear relationships were removed at each time point to evaluate, typically ignored, explicitly nonlinear dFNC using normalized mutual information. Simulations showed the proposed method accurately estimated NMI over time, even within relatively short windows of data. Results on fMRI data included 151 schizophrenia patients, and 163 healthy controls showed three unique, highly structured, mostly long-range, functional states that also showed significant group differences. This analysis identifies a higher level of explicitly nonlinear dependencies in transient connectivity within the visual network in healthy controls compared to schizophrenia patients. In particular, nonlinear relationships tend to be more widespread than linear ones. We also find highly significant differences in the relative co-occurrence of linear and explicitly nonlinear states in HC and SZ, suggesting these may be an important aspect of the disorder. Overall, this work suggests that quantifying nonlinear dependencies of dynamic functional connectivity may provide a complementary and potentially valuable tool for studying brain function by exposing relevant variation that is typically ignored.
0

Association between the oral microbiome and brain resting state connectivity in schizophrenia

Dongdong Lin et al.Dec 26, 2023
Abstract Recent microbiome-brain axis findings have shown evidence of the modulation of microbiome community as an environmental mediator in brain function and psychiatric illness. This work is focused on the role of the microbiome in understanding a rarely investigated environmental involvement in schizophrenia (SZ), especially in relation to brain circuit dysfunction. We leveraged high throughput microbial 16s rRNA sequencing and functional neuroimaging techniques to enable the delineation of microbiome-brain network links in SZ. N=213 SZ and healthy control (HC) subjects were assessed for the oral microbiome. Among them, 139 subjects were scanned by resting-state functional magnetic resonance imaging (rsfMRI) to derive brain functional connectivity. We found a significant microbiome compositional shift in SZ beta diversity (weighted UniFrac distance, p= 6×10 −3 ; Bray-Curtis distance p = 0.021). Fourteen microbial species involving pro-inflammatory and neurotransmitter signaling and H 2 S production, showed significant abundance alterations in SZ. Multivariate analysis revealed one pair of microbial and functional connectivity components showing a significant correlation of 0.46. Thirty five percent of microbial species and 87.8% of brain functional network connectivity from each component also showed significant differences between SZ and HC with strong performance in classifying SZ from HC, with an area under curve (AUC) = 0.84 and 0.87, respectively. The results suggest a potential link between oral microbiome dysbiosis and brain functional connectivity alteration in relation to SZ, possibly through immunological and neurotransmitter signaling pathways and the hypothalamic-pituitary-adrenal axis, supporting for future work in characterizing the role of oral microbiome in mediating effects on SZ brain functional activity.
4

Spatial Dynamic Subspaces Encode Sex-Specific Schizophrenia Disruptions in Transient Network Overlap and its Links to Genetic Risk

Armin Iraji et al.Jul 19, 2023
Abstract Background Recent advances in resting-state fMRI allow us to study spatial dynamics, the phenomenon of brain networks spatially evolving over time. However, most dynamic studies still use subject-specific, spatially-static nodes. As recent studies have demonstrated, incorporating time-resolved spatial properties is crucial for precise functional connectivity estimation and gaining unique insights into brain function. Nevertheless, estimating time-resolved networks poses challenges due to the low signal-to-noise ratio, limited information in short time segments, and uncertain identification of corresponding networks within and between subjects. Methods We adapt a reference-informed network estimation technique to capture time-resolved spatial networks and their dynamic spatial integration and segregation. We focus on time-resolved spatial functional network connectivity (spFNC), an estimate of network spatial coupling, to study sex-specific alterations in schizophrenia and their links to multi-factorial genomic data. Results Our findings are consistent with the dysconnectivity and neurodevelopment hypotheses and align with the cerebello-thalamo-cortical, triple-network, and frontoparietal dysconnectivity models, helping to unify them. The potential unification offers a new understanding of the underlying mechanisms. Notably, the posterior default mode/salience spFNC exhibits sex-specific schizophrenia alteration during the state with the highest global network integration and correlates with genetic risk for schizophrenia. This dysfunction is also reflected in high-dimensional (voxel-level) space in regions with weak functional connectivity to corresponding networks. Conclusions Our method can effectively capture spatially dynamic networks, detect nuanced SZ effects, and reveal the intricate relationship of dynamic information to genomic data. The results also underscore the potential of dynamic spatial dependence and weak connectivity in the clinical landscape.
0

Structural White Matter Abnormalities in Schizophrenia and Associations with Neurocognitive Performance and Symptom Severity

Alie Male et al.Jun 6, 2024
Schizophrenia is associated with robust white matter (WM) abnormalities but influences of potentially confounding variables and relationships with cognitive performance and symptom severity remain to be fully determined. This study was designed to evaluate WM abnormalities based on diffusion tensor imaging (DTI) in individuals with schizophrenia, and their relationships with cognitive performance and symptom severity. Data from individuals with schizophrenia (SZ; n=138, mean age±SD=39.02±11.82; 105 males) and healthy controls (HC; n=143, mean age±SD=37.07±10.84; 102 males) were collected as part of the Function Biomedical Informatics Research Network Phase 3 study. Fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD) were compared between individuals with schizophrenia and healthy controls, and their relationships with neurocognitive performance and symptomatology assessed. Individuals with SZ had significantly lower FA in forceps minor and the left inferior fronto-occipital fasciculus compared to HC. FA in several tracts were associated with speed of processing and attention/vigilance and the severity of the negative symptom alogia. This study suggests that regional WM abnormalities are fundamentally involved in the pathophysiology of schizophrenia and may contribute to cognitive performance deficits and symptom expression observed in schizophrenia.
Load More