XF
Xinyang Feng
Author with expertise in Diagnosis and Management of Alzheimer's Disease
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(50% Open Access)
Cited by:
524
h-index:
14
/
i10-index:
17
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A Deep Neural Network for Unsupervised Anomaly Detection and Diagnosis in Multivariate Time Series Data

Chuxu Zhang et al.Jul 17, 2019
+7
Y
D
C
Nowadays, multivariate time series data are increasingly collected in various real world systems, e.g., power plants, wearable devices, etc. Anomaly detection and diagnosis in multivariate time series refer to identifying abnormal status in certain time steps and pinpointing the root causes. Building such a system, however, is challenging since it not only requires to capture the temporal dependency in each time series, but also need encode the inter-correlations between different pairs of time series. In addition, the system should be robust to noise and provide operators with different levels of anomaly scores based upon the severity of different incidents. Despite the fact that a number of unsupervised anomaly detection algorithms have been developed, few of them can jointly address these challenges. In this paper, we propose a Multi-Scale Convolutional Recurrent Encoder-Decoder (MSCRED), to perform anomaly detection and diagnosis in multivariate time series data. Specifically, MSCRED first constructs multi-scale (resolution) signature matrices to characterize multiple levels of the system statuses in different time steps. Subsequently, given the signature matrices, a convolutional encoder is employed to encode the inter-sensor (time series) correlations and an attention based Convolutional Long-Short Term Memory (ConvLSTM) network is developed to capture the temporal patterns. Finally, based upon the feature maps which encode the inter-sensor correlations and temporal information, a convolutional decoder is used to reconstruct the input signature matrices and the residual signature matrices are further utilized to detect and diagnose anomalies. Extensive empirical studies based on a synthetic dataset and a real power plant dataset demonstrate that MSCRED can outperform state-ofthe-art baseline methods.
0

Deep Learning on MRI Affirms the Prominence of the Hippocampal Formation in Alzheimer's Disease Classification

Xinyang Feng et al.Oct 31, 2018
+2
Z
J
X
Deep learning techniques on MRI scans have demonstrated great potential to improve the diagnosis of neurological diseases. Here, we investigate the application of 3D deep convolutional neural networks (CNNs) for classifying Alzheimer's disease (AD) based on structural MRI data. In particular, we take on two challenges that are under-explored in the literature on deep learning for neuroimaging. First deep neural networks typically require large-scale data that is not always available in medical studies. Therefore, we explore the use of including longitudinal scans in classification studies, greatly increasing the amount of data for training and improving the generalization performance of our classifiers. Moreover, previous studies applying deep learning to classifying Alzheimer's disease from neuroimaging have typically addressed classification based on whole brain volumes but stopped short of performing in-depth regional analyses to localize the most predictive areas. Additionally, we show a deep net trained to distinguish between AD and cognitively normal subjects can be applied to classify mild cognitive impairment patients, with classification scores aligning empirically with the likelihood of progression to AD. Our initial results demonstrate both that we can classify AD with an area under the receiver operator characteristic curve (AUROC) of .990 and that we can predict conversion to AD among patients in the MCI subgroup with an AURUC of 0.787. We then localize the predictive regions, by performing both saliency-based interpretation and rigorous slice and lobar level ablation studies. Interestingly, our regional analyses identified the hippocampal formation, including the entorhinal cortex, to be the most predictive region for our models. This finding adds evidence that the hippocampal formation is an anatomical seat of AD and a prominent feature in its diagnosis. Together, the results of this study further demonstrate the potential of deep learning to impact AD classification and to identify AD's structural neuroimaging signatures. The proposed classification and regional analyses methods constitute a general framework that can easily be applied to other disorders and imaging modalities.
1

Network level enrichment provides a framework for biological interpretation of machine learning results

J. Li et al.Oct 17, 2023
+8
X
A
J
Abstract Machine learning algorithms are increasingly used to identify brain connectivity biomarkers linked to behavior and clinical outcomes. However, non-standard methodological choices in neuroimaging datasets, especially those with families or twins, have prevented robust machine learning applications. Additionally, prioritizing prediction accuracy over biological interpretability has made it challenging to understand the biological processes behind psychopathology. In this study, we employed a linear support vector regression model to study the relationship between resting-state functional connectivity networks and chronological age using data from the Human Connectome Project. We examined the effect of shared variance from twins and siblings by using cross-validation, either randomly assigning or keeping family members together. We also compared models with and without a Pearson feature filter and utilized a network enrichment approach to identify predictive brain networks. Results indicated that not accounting for shared family variance inflated prediction performance, and the Pearson filter reduced accuracy and reliability. Enhancing biological interpretability was achieved by inverting the machine learning model and applying network-level enrichment on the connectome, while directly using regression coefficients as feature weights led to misleading interpretations. Our findings offer crucial insights for applying machine learning to neuroimaging data, emphasizing the value of network enrichment for comprehensible biological interpretation.
0

Detecting prodromal Alzheimer's disease with MRI through deep learning

Xinyang Feng et al.Oct 22, 2019
S
F
X
Deep learning applied to MRI for Alzheimer's classification is hypothesized to improve if the deep learning model implicates disease's pathophysiology. The challenge in testing this hypothesis is that large-scale data are required to train this type of model. Here, we overcome this challenge by using a novel data augmentation strategy and show that our MRI-based deep learning model classifies Alzheimer's dementia with high accuracy. Moreover, a class activation map was found dominated by signal from the hippocampal formation, a site where Alzheimer's pathophysiology begins. Next, we tested the model's performance in prodromal Alzheimer's when patients present with mild cognitive impairment (MCI). We retroactively dichotomized a large cohort of MCI patients who were followed for up to 10 years into those with and without prodromal Alzheimer's at baseline and used the dementia-derived model to generate individual 'deep learning MRI' scores. We compared the two groups on these scores, and on other biomarkers of amyloid pathology, tau pathology, and neurodegeneration. The deep learning MRI scores outperformed nearly all other biomarkers, including, unexpectedly, biomarkers of amyloid or tau pathology, in classifying prodromal disease and in predicting clinical progression. Providing a mechanistic explanation, the deep learning MRI scores were found to be linked to regional tau pathology, through investigations using cross-sectional, longitudinal, premortem and postmortem data. Our findings validate that a disease's known pathophysiology can improve the design and performance of deep learning models. Moreover, by showing that deep learning can extract useful biomarker information from conventional MRIs, the advantages of this model extend practically, potentially reducing patient burden, risk, and cost.