CC
Christian Caberto
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(67% Open Access)
Cited by:
805
h-index:
18
/
i10-index:
21
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Genetic analyses of diverse populations improves discovery for complex traits

Genevieve Wojcik et al.Jun 1, 2019
+83
V
N
G
Genome-wide association studies (GWAS) have laid the foundation for investigations into the biology of complex traits, drug development and clinical guidelines. However, the majority of discovery efforts are based on data from populations of European ancestry1–3. In light of the differential genetic architecture that is known to exist between populations, bias in representation can exacerbate existing disease and healthcare disparities. Critical variants may be missed if they have a low frequency or are completely absent in European populations, especially as the field shifts its attention towards rare variants, which are more likely to be population-specific4–10. Additionally, effect sizes and their derived risk prediction scores derived in one population may not accurately extrapolate to other populations11,12. Here we demonstrate the value of diverse, multi-ethnic participants in large-scale genomic studies. The Population Architecture using Genomics and Epidemiology (PAGE) study conducted a GWAS of 26 clinical and behavioural phenotypes in 49,839 non-European individuals. Using strategies tailored for analysis of multi-ethnic and admixed populations, we describe a framework for analysing diverse populations, identify 27 novel loci and 38 secondary signals at known loci, as well as replicate 1,444 GWAS catalogue associations across these traits. Our data show evidence of effect-size heterogeneity across ancestries for published GWAS associations, substantial benefits for fine-mapping using diverse cohorts and insights into clinical implications. In the United States—where minority populations have a disproportionately higher burden of chronic conditions13—the lack of representation of diverse populations in genetic research will result in inequitable access to precision medicine for those with the highest burden of disease. We strongly advocate for continued, large genome-wide efforts in diverse populations to maximize genetic discovery and reduce health disparities. Genetic analyses of ancestrally diverse populations show evidence of heterogeneity across ancestries and provide insights into clinical implications, highlighting the importance of including ancestrally diverse populations to maximize genetic discovery and reduce health disparities.
0
Citation800
0
Save
0

Population specific reference panels are crucial for the genetic analyses of Native Hawai’ians: an example of theCREBRFlocus

Meng Lin et al.Oct 1, 2019
+14
P
C
M
Abstract Statistical imputation applied to genome-wide array data is the most cost-effective approach to complete the catalog of genetic variation in a study population. However, imputed genotypes in underrepresented populations incur greater inaccuracies due to ascertainment bias and a lack of representation among reference individuals,, further contributing to the obstacles to study these populations. Here we examined the consequences due to the lack of representation by genotyping a functionally important, Polynesian-specific variant, rs373863828, in the CREBRF gene, in a large number of self-reported Native Hawai’ians (N=3,693) from the Multiethnic Cohort. We found the derived allele of rs373863828 was significantly associated with several adiposity traits with large effects ( e.g. 0.214 s.d., or approximately 1.28 kg/m 2 , per allele, in BMI as the most significant; P = 7.5×10 −5 ). Due to the current absence of Polynesian representation in publicly accessible reference sequences, rs373863828 or any of its proxies could not be tested through imputation using these existing resources. Moreover, the association signals at this Polynesian-specific variant could not be captured by alternative approaches, such as admixture mapping. In contrast, highly accurate imputation can be achieved even if a small number (<200) of Polynesian reference individuals were available. By constructing an internal set of Polynesian reference individuals, we were able to increase sample size for analysis up to 3,936 individuals, and improved the statistical evidence of association (e.g. p = 1.5×10 −7 , 3×10 −6 , and 1.4×10 −4 for BMI, hip circumference, and T2D, respectively). Taken together, our results suggest the alarming possibility that lack of representation in reference panels would inhibit discovery of functionally important, population-specific loci such as CREBRF . Yet, they could be easily detected and prioritized with improved representation of diverse populations in sequencing studies.
0
Citation5
0
Save
0

The PAGE Study: How Genetic Diversity Improves Our Understanding of the Architecture of Complex Traits

Genevieve Wojcik et al.Sep 15, 2017
+84
K
W
G
Genome-wide association studies (GWAS) have laid the foundation for many downstream investigations, including the biology of complex traits, drug development, and clinical guidelines. However, the dominance of European-ancestry populations in GWAS creates a biased view of human variation and hinders the translation of genetic associations into clinical and public health applications. To demonstrate the benefit of studying underrepresented populations, the Population Architecture using Genomics and Epidemiology (PAGE) study conducted a GWAS of 26 clinical and behavioral phenotypes in 49,839 non-European individuals. Using novel strategies for multi-ethnic analysis of admixed populations, we confirm 574 GWAS catalog variants across these traits, and find 28 novel loci and 42 residual signals in known loci. Our data show strong evidence of effect-size heterogeneity across ancestries for published GWAS associations, which substantially restricts genetically-guided precision medicine. We advocate for new, large genome-wide efforts in diverse populations to reduce health disparities.