FC
F. Cunningham
Author with expertise in Mechanisms and Applications of RNA Interference
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(50% Open Access)
Cited by:
972
h-index:
26
/
i10-index:
62
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A RADIOIMMUNOASSAY FOR AVIAN LUTEINIZING HORMONE

B. Follett et al.Feb 1, 1972
SUMMARY A radioimmunoassay for avian luteinizing hormone (LH) is described, using antisera raised against chicken pituitary gonadotrophins of varying degrees of purity, and purified chicken LH for radio-iodination. A postprecipitation double antibody method was developed with a sensitivity to 30–60 pg of purified chicken LH. The specificity of the method was investigated. Fractions of follicle-stimulating hormone with high biological activity showed little immunological activity, whilst all the fractions of LH tested showed strong immunological potency. Human, ovine and bovine LH showed virtually no cross-reaction. The method measures immunoreactive LH in 25–200 μl plasma from chickens and quail. The plasma levels correlate well with known physiological processes, being absent in hypophysectomized birds and low in sexually immature quail. When testicular growth begins in quail the level rises eightfold; castration increases it still further while the level is lowered by testosterone. Manipulation of the pituitary-thyroid system in quail did not significantly affect the level of plasma activity. Estimates of activity are independent of either the antiserum or the iodinated preparation of LH used in the assay. The antisera used all blocked gonadotrophic activity in vivo .
0
Citation520
0
Save
120

High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants

Gözde Demirer et al.Feb 25, 2019
Genetic engineering of plants is at the core of sustainability efforts, natural product synthesis and crop engineering. The plant cell wall is a barrier that limits the ease and throughput of exogenous biomolecule delivery to plants. Current delivery methods either suffer from host-range limitations, low transformation efficiencies, tissue damage or unavoidable DNA integration into the host genome. Here, we demonstrate efficient diffusion-based biomolecule delivery into intact plants of several species with pristine and chemically functionalized high aspect ratio nanomaterials. Efficient DNA delivery and strong protein expression without transgene integration is accomplished in Nicotiana benthamiana (Nb), Eruca sativa (arugula), Triticum aestivum (wheat) and Gossypium hirsutum (cotton) leaves and arugula protoplasts. We find that nanomaterials not only facilitate biomolecule transport into plant cells but also protect polynucleotides from nuclease degradation. Our work provides a tool for species-independent and passive delivery of genetic material, without transgene integration, into plant cells for diverse biotechnology applications.
120
Citation451
0
Save
0

Covalent Attachment of Horseradish Peroxidase to Single-Walled Carbon Nanotubes for Hydrogen Peroxide Detection

Francis Ledesma et al.Dec 15, 2023
Single-walled carbon nanotubes (SWCNTs) are desirable nanoparticles for sensing biological analytes due to their photostability and intrinsic near-infrared fluorescence. Previous strategies for generating SWCNT nanosensors have leveraged nonspecific adsorption of sensing modalities to the hydrophobic SWCNT surface that often require engineering new molecular recognition elements. An attractive alternate strategy is to leverage pre-existing molecular recognition of proteins for analyte specificity, yet attaching proteins to SWCNT for nanosensor generation remains challenging. Towards this end, we introduce a generalizable platform to generate protein-SWCNT-based optical sensors and use this strategy to synthesize a hydrogen peroxide (H 2 O 2 ) nanosensor by covalently attaching horseradish peroxidase (HRP) to the SWCNT surface. We demonstrate a concentration-dependent response to H 2 O 2 , confirm the nanosensor can image H 2 O 2 in real-time, and assess the nanosensor's selectivity for H 2 O 2 against a panel of biologically relevant analytes. Taken together, these results demonstrate successful covalent attachment of enzymes to SWCNTs while preserving both intrinsic SWCNT fluorescence and enzyme function. We anticipate this platform can be adapted to covalently attach other proteins of interest including other enzymes for sensing or antibodies for targeted imaging and cargo delivery.
0

High Aspect Ratio Nanomaterials Enable Delivery of Functional Genetic Material Without DNA Integration in Mature Plants

Gözde Demirer et al.Aug 22, 2017
Genetic engineering of plants is at the core of sustainability efforts, natural product synthesis, and agricultural crop engineering. The plant cell wall is a barrier that limits the ease and throughput with which exogenous biomolecules can be delivered to plants. Current delivery methods either suffer from host range limitations, low transformation efficiencies, tissue damage, or unavoidable DNA integration into the host genome. Here, we demonstrate efficient diffusion-based biomolecule delivery into tissues and organs of intact plants of several species with a suite of pristine and chemically-functionalized high aspect ratio nanomaterials. Efficient DNA delivery and strong protein expression without transgene integration is accomplished in Nicotiana benthamiana (Nb), Eruca sativa (arugula), Triticum aestivum (wheat) and Gossypium hirsutum (cotton) leaves and arugula protoplasts. We also demonstrate a second nanoparticle-based strategy in which small interfering RNA (siRNA) is delivered to Nb leaves and silence a gene with 95% efficiency. We find that nanomaterials not only facilitate biomolecule transport into plant cells but also protect polynucleotides from nuclease degradation. Our work provides a tool for species-independent and passive delivery of genetic material, without transgene integration, into plant cells for diverse biotechnology applications.
0

DNA Nanostructures Coordinate Gene Silencing in Mature Plants

Huan Zhang et al.Feb 2, 2019
Plant bioengineering may generate high yielding and stress-resistant crops amidst a changing climate and a growing global population. However, delivery of biomolecules to plants relies on Agrobacterium infection or biolistic particle delivery, the former of which is only amenable to DNA delivery. The difficulty in delivering functional biomolecules such as RNA to plant cells is due to the plant cell wall which is absent in mammalian cells and poses the dominant physical barrier to exogenous biomolecule delivery in plants. DNA nanostructure-mediated biomolecule delivery is an effective strategy to deliver cargoes across the lipid bilayer of mammalian cells, however, nanoparticle-mediated delivery remains unexplored for passive biomolecule delivery across the cell wall in plants. Herein, we report a systematic assessment of different DNA nanostructures for their ability to internalize into cells of mature plants, deliver small interfering RNAs (siRNAs), and effectively silence a constitutively-expressed gene in Nicotiana benthamiana leaves. We show that nanostructure internalization into plant cells and the corresponding gene silencing efficiency depends on the DNA nanostructure size, shape, compactness, stiffness, and location of the siRNA attachment locus on the nanostructure. We further confirm that the internalization efficiency of DNA nanostructures correlates with their respective gene silencing efficiencies, but that the endogenous gene silencing pathway depends on the siRNA attachment locus. Our work establishes the feasibility of biomolecule delivery to plants with DNA nanostructures, and details both the design parameters of importance for plant cell internalization, and also assesses the impact of DNA nanostructure geometry for gene silencing mechanisms.
1

Mapping the Morphology of DNA on Carbon Nanotube-Based Sensors in Solution using X-ray Scattering Interferometry

Daniel Rosenberg et al.May 6, 2023
Abstract Single-walled carbon nanotubes (SWCNTs) with adsorbed single-stranded DNA (ssDNA) are applied as sensors to investigate biological systems, with applications ranging from clinical diagnostics to agricultural biotechnology. Unique ssDNA sequences render SWCNTs selectively responsive to target analytes. However, it remains unclear how the ssDNA conformation on the SWCNT surface contributes to their ultimate functionality, as observations have been constrained to computational models or experiments under dehydrated states that differ substantially from the aqueous biological environments in which the nanosensors are applied. Herein, we demonstrate a direct mode of measuring in-solution ssDNA geometries on SWCNTs via X-ray scattering interferometry (XSI), which leverages the interference pattern produced by AuNP tags conjugated to ssDNA on the SWCNT surface. We employ XSI to quantify distinct surface-adsorbed morphologies for two ssDNA oligomer lengths, conformational changes as a function of ionic strength, and the mechanism of dopamine sensing for a previously established ssDNA-SWCNT nanosensor, with corresponding ab initio modeling for visualization. We show that the shorter oligomer, (GT) 6 , adopts a highly ordered structure of stacked rings along the SWCNT axis, compared to the longer, less periodic (GT) 15 wrapping. The presence of dopamine elicits a simultaneous axial elongation and radial constriction of the ssDNA closer to the SWCNT surface. Application of XSI to probe solution-phase morphologies of nanoparticle-based tools will yield insights into sensing mechanisms and inform future design strategies for polymer-functionalized SWCNT technologies.