SL
Santana Lardo
Author with expertise in Regulation of Chromatin Structure and Function
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(50% Open Access)
Cited by:
0
h-index:
5
/
i10-index:
3
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Modeling methyl-sensitive transcription factor motifs with an expanded epigenetic alphabet

Coby Viner et al.Mar 15, 2016
+12
J
C
C
Introduction. Many transcription factors initiate transcription only in specific sequence contexts, providing the means for sequence specificity of transcriptional control. A four-letter DNA alphabet only partially describes the possible diversity of nucleobases a transcription factor might encounter. For instance, cytosine is often present in a covalently modified form: 5-methylcytosine (5mC). 5mC can be successively oxidized to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). Just as transcription factors distinguish one unmodified nucleobase from another, some have been shown to distinguish unmodified bases from these covalently modified bases. Modification-sensitive transcription factors provide a mechanism by which widespread changes in DNA methylation and hydroxymethylation can dramatically shift active gene expression programs. Methods. To understand the effect of modified nucleobases on gene regulation, we developed methods to discover motifs and identify transcription factor binding sites in DNA with covalent modifications. Our models expand the standard A/C/G/T alphabet, adding m (5mC) h (5hmC), f (5fC), and c (5caC). We additionally add symbols to encode guanine complementary to these modified cytosine nucleobases, as well as symbols to represent states of ambiguous modification. We adapted the well-established position weight matrix model of transcription factor binding affinity to an expanded alphabet. We developed a program, Cytomod, to create a modified sequence. We also enhanced the MEME Suite to be able to handle custom alphabets. These versions permit users to specify new alphabets, anticipating future alphabet expansions. Results. We created an expanded-alphabet sequence using whole-genome maps of 5mC and 5hmC in naive ex vivo mouse T cells. Using this sequence and ChIP-seq data from Mouse ENCODE and others, we identified modification-sensitive cis-regulatory modules. We elucidated various known methylation binding preferences, including the preference of ZFP57 and C/EBPβ for methylated motifs and the preference of c-Myc for unmethylated E-box motifs. We demonstrated that our method is robust to parameter perturbations, with transcription factors' sensitivities for methylated and hydroxymethylated DNA broadly conserved across a range of modified base calling thresholds. Hypothesis testing across different threshold values was used to determine cutoffs most suitable for further analyses. Using these known binding preferences to tune model parameters enables discovery of novel modified motifs. Discussion. Hypothesis testing of motif central enrichment provides a natural means of differentially assessing modified versus unmodified binding affinity, without most of the limitations of a de novo analysis. This approach can be readily extended to other DNA modifications, provided genome-wide single-base resolution data is available. As more high-resolution epigenomic data becomes available, we expect this method to continue to yield insights into altered transcription factor binding affinities across a variety of modifications.
1

An oligodendrocyte silencer element underlies the pathogenic impact of lamin B1 structural variants

Bruce Nmezi et al.Aug 7, 2023
+31
A
G
B
Abstract The role of non-coding regulatory elements and how they might contribute to tissue type specificity of disease phenotypes is poorly understood. Autosomal Dominant Leukodystrophy (ADLD) is a fatal, adult-onset, neurological disorder that is characterized by extensive CNS demyelination. Most cases of ADLD are caused by tandem genomic duplications involving the lamin B1 gene ( LMNB1 ) while a small subset are caused by genomic deletions upstream of the gene. Utilizing data from recently identified families that carry LMNB1 gene duplications but do not exhibit demyelination, ADLD patient tissues, CRISPR modified cell lines and mouse models, we have identified a novel silencer element that is lost in ADLD patients and that specifically targets overexpression to oligodendrocytes. This element consists of CTCF binding sites that mediate three-dimensional chromatin looping involving the LMNB1 and the recruitment of the PRC2 repressor complex. Loss of the silencer element in ADLD identifies a previously unknown role for silencer elements in tissue specificity and disease causation.
0

Super-resolution imaging reveals the evolution of higher-order chromatin folding in early carcinogenesis

Jianquan Xu et al.Jun 17, 2019
+17
H
H
J
Aberrant chromatin structure is a hallmark in cancer cells and has long been used for clinical diagnosis of cancer. However, underlying higher-order chromatin folding during malignant transformation remains elusive, due to the lack of molecular scale resolution. Using optimized stochastic optical reconstruction microscopy (STORM) for pathological tissue (PathSTORM), we uncovered a gradual decompaction and fragmented higher-order chromatin folding throughout all stages of carcinogenesis in multiple tumor types, even prior to the tumor formation. Our integrated imaging, genomic, and transcriptomic analyses reveal the functional consequences in enhanced formation of transcription factories, spatial juxtaposition with relaxed nanosized chromatin domains and impaired genomic stability. We also demonstrate the potential of imaging higher-order chromatin decompaction to detect high-risk precursors that cannot be distinguished by conventional pathology. Taken together, our findings reveal the gradual decompaction and fragmentation of higher-order chromatin structure as an enabling characteristic in early carcinogenesis to facilitate malignant transformation, which may improve cancer diagnosis, risk stratification, and prevention.
1

FACT regulates pluripotency through distal regulation of gene expression in murine embryonic stem cells

David Klein et al.Jul 31, 2021
S
K
S
D
Abstract The FACT complex is a conserved histone chaperone with essential roles in transcription and histone deposition. FACT is essential in pluripotent and cancer cells, but otherwise dispensable for most mammalian cell types. FACT deletion or inhibition can block induction of pluripotent stem cells, yet the mechanism through which FACT regulates cell fate decisions remains unclear. To determine this mechanism, we used inducible depletion of FACT subunit SPT16 in murine embryonic stem cells paired with genomic factor localization, nascent transcription, and chromatin accessibility analyses. Over a timecourse of SPT16 depletion, nucleosomes invade loci bound by master pluripotency factors and gene-distal DNaseI hypersensitive sites. Simultaneously, transcription of Pou5f1 (OCT4), Sox2, Nanog , and enhancer RNAs produced at the genes’ associated enhancers are downregulated, suggesting that FACT regulates expression of the pluripotency factors themselves. We find that FACT maintains cellular pluripotency through a precise nucleosome-based regulatory mechanism for appropriate expression of both coding and non-coding transcripts associated with pluripotency.