TB
Tufikameni Brima
Author with expertise in Molecular Basis of Rett Syndrome and Related Disorders
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
3
(33% Open Access)
Cited by:
0
h-index:
5
/
i10-index:
5
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Image processing and analysis methods for the Adolescent Brain Cognitive Development Study

Donald Hagler et al.Nov 4, 2018
+142
F
F
D
The Adolescent Brain Cognitive Development (ABCD) Study is an ongoing, nationwide study of the effects of environmental influences on behavioral and brain development in adolescents. The ABCD Study is a collaborative effort, including a Coordinating Center, 21 data acquisition sites across the United States, and a Data Analysis and Informatics Center (DAIC). The main objective of the study is to recruit and assess over eleven thousand 9-10-year-olds and follow them over the course of 10 years to characterize normative brain and cognitive development, the many factors that influence brain development, and the effects of those factors on mental health and other outcomes. The study employs state-of-the-art multimodal brain imaging, cognitive and clinical assessments, bioassays, and careful assessment of substance use, environment, psychopathological symptoms, and social functioning. The data will provide a resource of unprecedented scale and depth for studying typical and atypical development. Here, we describe the baseline neuroimaging processing and subject-level analysis methods used by the ABCD DAIC in the centralized processing and extraction of neuroanatomical and functional imaging phenotypes. Neuroimaging processing and analyses include modality-specific corrections for distortions and motion, brain segmentation and cortical surface reconstruction derived from structural magnetic resonance imaging (sMRI), analysis of brain microstructure using diffusion MRI (dMRI), task-related analysis of functional MRI (fMRI), and functional connectivity analysis of resting-state fMRI.
0

Auditory sensory memory span for duration is severely curtailed in females with Rett Syndrome.

Tufikameni Brima et al.Mar 5, 2019
+5
O
C
T
Rett syndrome (RTT), a rare neurodevelopmental disorder caused by mutations in the MECP2 gene, is typified by profound cognitive impairment and severe language impairment, rendering it very difficult to accurately measure auditory processing capabilities behaviorally in this population. Here we leverage the mismatch negativity (MMN) component of the event-related potential to measure the ability of RTT patients to decode and store occasional duration deviations in a stream of auditory stimuli. Sensory memory for duration, crucial for speech comprehension, has not been studied in RTT. High-density EEG was successfully recorded in 18 females with RTT and 27 age-matched typically developing (TD) controls (aged 6-22 years). Data from 7 RTT and 3 TD participants were excluded for excessive noise. Stimuli were 1kHz tones with a standard duration of 100ms and deviant duration of 180ms. To assess the sustainability of sensory memory, stimulus presentation rate was varied with stimulus onset asynchronies (SOAs) of 450, 900 and 1800ms. MMNs with maximum negativity over fronto-central scalp and a latency of 220-230ms were clearly evident for each presentation rate in the TD group, but only for the shortest SOA in the RTT group. Repeated-measures ANOVA revealed a significant group by SOA interaction. MMN amplitude correlated with age in the TD group only. MMN amplitude was not correlated with the Rett Syndrome Severity Scale. This study indicates that while RTT patients can decode deviations in auditory duration, the span of this sensory memory system is severely foreshortened, with likely implications for speech decoding abilities.
0

Probing a neural unreliability account of auditory sensory processing atypicalities in Rett Syndrome

Tufikameni Brima et al.Jun 3, 2024
+5
K
S
T
Abstract Background In the search for objective tools to quantify neural function in Rett Syndrome (RTT), which are crucial in the evaluation of therapeutic efficacy in clinical trials, recordings of sensory-perceptual functioning using event-related potential (ERP) approaches have emerged as potentially powerful tools. Considerable work points to highly anomalous auditory evoked potentials (AEPs) in RTT. However, an assumption of the typical signal-averaging method used to derive these measures is “stationarity” of the underlying responses – i.e. neural responses to each input are highly stereotyped. An alternate possibility is that responses to repeated stimuli are highly variable in RTT. If so, this will significantly impact the validity of assumptions about underlying neural dysfunction, and likely lead to overestimation of underlying neuropathology. To assess this possibility, analyses at the single-trial level assessing signal-to-noise ratios (SNR), inter-trial variability (ITV) and inter-trial phase coherence (ITPC) are necessary. Methods AEPs were recorded to simple 100 Hz tones from 18 RTT and 27 age-matched controls (Ages: 6–22 years). We applied standard AEP averaging, as well as measures of neuronal reliability at the single-trial level (i.e. SNR, ITV, ITPC). To separate signal-carrying components from non-neural noise sources, we also applied a denoising source separation (DSS) algorithm and then repeated the reliability measures. Results Substantially increased ITV, lower SNRs, and reduced ITPC were observed in auditory responses of RTT participants, supporting a “neural unreliability” account. Application of the DSS technique made it clear that non-neural noise sources contribute to overestimation of the extent of processing deficits in RTT. Post-DSS, ITV measures were substantially reduced, so much so that pre-DSS ITV differences between RTT and TD populations were no longer detected. In the case of SNR and ITPC, DSS substantially improved these estimates in the RTT population, but robust differences between RTT and TD were still fully evident. Conclusions To accurately represent the degree of neural dysfunction in RTT using the ERP technique, a consideration of response reliability at the single-trial level is highly advised. Non-neural sources of noise lead to overestimation of the degree of pathological processing in RTT, and denoising source separation techniques during signal processing substantially ameliorate this issue.