PW
Priscilla Wu
Author with expertise in Adult Neurogenesis and Brain Development
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
2,159
h-index:
18
/
i10-index:
18
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A Resource of Cre Driver Lines for Genetic Targeting of GABAergic Neurons in Cerebral Cortex

Hiroki Taniguchi et al.Sep 1, 2011
+12
R
S
H

Summary

 A key obstacle to understanding neural circuits in the cerebral cortex is that of unraveling the diversity of GABAergic interneurons. This diversity poses general questions for neural circuit analysis: how are these interneuron cell types generated and assembled into stereotyped local circuits and how do they differentially contribute to circuit operations that underlie cortical functions ranging from perception to cognition? Using genetic engineering in mice, we have generated and characterized approximately 20 Cre and inducible CreER knockin driver lines that reliably target major classes and lineages of GABAergic neurons. More select populations are captured by intersection of Cre and Flp drivers. Genetic targeting allows reliable identification, monitoring, and manipulation of cortical GABAergic neurons, thereby enabling a systematic and comprehensive analysis from cell fate specification, migration, and connectivity, to their functions in network dynamics and behavior. As such, this approach will accelerate the study of GABAergic circuits throughout the mammalian brain.
0

Ankyrin-Based Subcellular Gradient of Neurofascin, an Immunoglobulin Family Protein, Directs GABAergic Innervation at Purkinje Axon Initial Segment

Fabrice Ango et al.Oct 1, 2004
+3
H
G
F
Distinct classes of GABAergic synapses are segregated into subcellular domains (i.e., dendrite, soma, and axon initial segment-AIS), thereby differentially regulating the input, integration, and output of principal neurons. In cerebellum, for example, basket interneurons make exquisitely precise "pinceau synapses" on AIS of Purkinje neurons, but the underlying mechanism is unknown. Using BAC transgenic reporter mice, we found that basket axons always contacted Purkinje soma before innervating AIS. This synapse targeting process followed the establishment of a subcellular gradient of neurofascin186 (NF186), an L1 family immunoglobulin cell adhesion molecule (L1CAM), along the Purkinje AIS-soma axis. This gradient was dependent on ankyrinG, an AIS-restricted membrane adaptor protein that recruits NF186. In the absence of neurofascin gradient, basket axons lost directional growth along Purkinje neurons and precisely followed NF186 to ectopic locations. Disruption of NF186-ankyrinG interactions at AIS reduced pinceau synapse formation. These results implicate ankyrin-based localization of L1CAMs in subcellular organization of GABAergic synapses.
124

Genetic dissection of glutamatergic neuron subpopulations and developmental trajectories in the cerebral cortex

Katherine Matho et al.Apr 24, 2020
+21
W
D
K
ABSTRACT Diverse types of glutamatergic pyramidal neurons (PyNs) mediate the myriad processing streams and output channels of the cerebral cortex, yet all derive from neural progenitors of the embryonic dorsal telencephalon. Here, we establish genetic strategies and tools for dissecting and fate mapping PyN subpopulations based on their developmental and molecular programs. We leverage key transcription factors and effector genes to systematically target the temporal patterning programs in progenitors and differentiation programs in postmitotic neurons. We generated over a dozen temporally inducible mouse Cre and Flp knock-in driver lines to enable combinatorial targeting of major progenitor types and projection classes. Intersectional converter lines confer viral access to specific subsets defined by developmental origin, marker expression, anatomical location and projection targets. These strategies establish an experimental framework for understanding the hierarchical organization and developmental trajectory of PyN subpopulations that assemble cortical processing networks and output channels.
124
Citation19
0
Save
0

Radial glial lineage progression and differential intermediate progenitor amplification underlie striatal compartments and circuit organization

Sean Kelly et al.Jan 8, 2018
+8
M
R
S
The circuitry of the striatum is characterized by two organizational plans: the division into striosome and matrix compartments, thought to mediate evaluation and action, and the direct and indirect pathways, thought to promote or suppress behavior. The developmental origins of and relationships between these organizations are unknown, leaving a conceptual gap in understanding the cortico-basal ganglia system. Through genetic fate mapping, we demonstrate that striosome-matrix compartmentalization arises from a lineage program embedded in lateral ganglionic eminence radial glial progenitors mediating neurogenesis through two distinct types of intermediate progenitors (IPs). The early phase of this program produces striosomal spiny projection neurons (SPNs) through fate-restricted apical IPs (aIPSs) with limited capacity; the late phase produces matrix SPNs through fate-restricted basal IPs (bIPMs) with expanded capacity. Remarkably, direct and indirect pathway SPNs arise within both aIPS and bIPM pools, suggesting that striosome-matrix architecture is the fundamental organizational plan of basal ganglia circuitry organization.