LF
Luca Fumis
Author with expertise in Analysis of Gene Interaction Networks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(86% Open Access)
Cited by:
1,900
h-index:
7
/
i10-index:
7
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Open Targets: a platform for therapeutic target identification and validation

Gautier Koscielny et al.Nov 3, 2016
+53
C
A
G
We have designed and developed a data integration and visualization platform that provides evidence about the association of known and potential drug targets with diseases. The platform is designed to support identification and prioritization of biological targets for follow-up. Each drug target is linked to a disease using integrated genome-wide data from a broad range of data sources. The platform provides either a target-centric workflow to identify diseases that may be associated with a specific target, or a disease-centric workflow to identify targets that may be associated with a specific disease. Users can easily transition between these target- and disease-centric workflows. The Open Targets Validation Platform is accessible at https://www.targetvalidation.org.
0

Open Targets Platform: new developments and updates two years on

Denise Carvalho‐Silva et al.Oct 26, 2018
+15
M
A
D
The Open Targets Platform integrates evidence from genetics, genomics, transcriptomics, drugs, animal models and scientific literature to score and rank target-disease associations for drug target identification. The associations are displayed in an intuitive user interface (https://www.targetvalidation.org), and are available through a REST-API (https://api.opentargets.io/v3/platform/docs/swagger-ui) and a bulk download (https://www.targetvalidation.org/downloads/data). In addition to target-disease associations, we also aggregate and display data at the target and disease levels to aid target prioritisation. Since our first publication two years ago, we have made eight releases, added new data sources for target-disease associations, started including causal genetic variants from non genome-wide targeted arrays, added new target and disease annotations, launched new visualisations and improved existing ones and released a new web tool for batch search of up to 200 targets. We have a new URL for the Open Targets Platform REST-API, new REST endpoints and also removed the need for authorisation for API fair use. Here, we present the latest developments of the Open Targets Platform, expanding the evidence and target-disease associations with new and improved data sources, refining data quality, enhancing website usability, and increasing our user base with our training workshops, user support, social media and bioinformatics forum engagement.
0
Citation403
0
Save
0

Open Targets Genetics: systematic identification of trait-associated genes using large-scale genetics and functional genomics

Maya Ghoussaini et al.Sep 17, 2020
+32
M
E
M
Abstract Open Targets Genetics (https://genetics.opentargets.org) is an open-access integrative resource that aggregates human GWAS and functional genomics data including gene expression, protein abundance, chromatin interaction and conformation data from a wide range of cell types and tissues to make robust connections between GWAS-associated loci, variants and likely causal genes. This enables systematic identification and prioritisation of likely causal variants and genes across all published trait-associated loci. In this paper, we describe the public resources we aggregate, the technology and analyses we use, and the functionality that the portal offers. Open Targets Genetics can be searched by variant, gene or study/phenotype. It offers tools that enable users to prioritise causal variants and genes at disease-associated loci and access systematic cross-disease and disease-molecular trait colocalization analysis across 92 cell types and tissues including the eQTL Catalogue. Data visualizations such as Manhattan-like plots, regional plots, credible sets overlap between studies and PheWAS plots enable users to explore GWAS signals in depth. The integrated data is made available through the web portal, for bulk download and via a GraphQL API, and the software is open source. Applications of this integrated data include identification of novel targets for drug discovery and drug repurposing.
0
Citation400
0
Save
0

Open Targets Platform: supporting systematic drug–target identification and prioritisation

David Ochoa et al.Nov 11, 2020
+29
M
A
D
Abstract The Open Targets Platform (https://www.targetvalidation.org/) provides users with a queryable knowledgebase and user interface to aid systematic target identification and prioritisation for drug discovery based upon underlying evidence. It is publicly available and the underlying code is open source. Since our last update two years ago, we have had 10 releases to maintain and continuously improve evidence for target–disease relationships from 20 different data sources. In addition, we have integrated new evidence from key datasets, including prioritised targets identified from genome-wide CRISPR knockout screens in 300 cancer models (Project Score), and GWAS/UK BioBank statistical genetic analysis evidence from the Open Targets Genetics Portal. We have evolved our evidence scoring framework to improve target identification. To aid the prioritisation of targets and inform on the potential impact of modulating a given target, we have added evaluation of post-marketing adverse drug reactions and new curated information on target tractability and safety. We have also developed the user interface and backend technologies to improve performance and usability. In this article, we describe the latest enhancements to the Platform, to address the fundamental challenge that developing effective and safe drugs is difficult and expensive.
0
Citation332
0
Save
0

An open approach to systematically prioritize causal variants and genes at all published human GWAS trait-associated loci

Edward Mountjoy et al.Oct 28, 2021
+16
M
E
E
Genome-wide association studies (GWASs) have identified many variants associated with complex traits, but identifying the causal gene(s) is a major challenge. In the present study, we present an open resource that provides systematic fine mapping and gene prioritization across 133,441 published human GWAS loci. We integrate genetics (GWAS Catalog and UK Biobank) with transcriptomic, proteomic and epigenomic data, including systematic disease–disease and disease–molecular trait colocalization results across 92 cell types and tissues. We identify 729 loci fine mapped to a single-coding causal variant and colocalized with a single gene. We trained a machine-learning model using the fine-mapped genetics and functional genomics data and 445 gold-standard curated GWAS loci to distinguish causal genes from neighboring genes, outperforming a naive distance-based model. Our prioritized genes were enriched for known approved drug targets (odds ratio = 8.1, 95% confidence interval = 5.7, 11.5). These results are publicly available through a web portal ( http://genetics.opentargets.org ), enabling users to easily prioritize genes at disease-associated loci and assess their potential as drug targets. Open Targets Genetics is a community resource that provides systematic fine mapping at human GWAS loci, enabling users to prioritize genes at disease-associated regions and assess their potential as drug targets.
0
Citation330
0
Save
94

Open Targets Genetics: An open approach to systematically prioritize causal variants and genes at all published human GWAS trait-associated loci

Edward Mountjoy et al.Sep 17, 2020
+16
G
M
E
Abstract Genome-wide association studies (GWAS) have identified many variants robustly associated with complex traits but identifying the gene(s) mediating such associations is a major challenge. Here we present an open resource that provides systematic fine-mapping and protein-coding gene prioritization across 133,441 published human GWAS loci. We integrate diverse data sources, including genetics (from GWAS Catalog and UK Biobank) as well as transcriptomic, proteomic and epigenomic data across many tissues and cell types. We also provide systematic disease-disease and disease-molecular trait colocalization results across 92 cell types and tissues and identify 729 loci fine-mapped to a single coding causal variant and colocalized with a single gene. We trained a machine learning model using the fine mapped genetics and functional genomics data using 445 gold standard curated GWAS loci to distinguish causal genes from background genes at the same loci, outperforming a naive distance based model. Genes prioritized by our model are enriched for known approved drug targets (OR = 8.1, 95% CI: [5.7, 11.5]). These results will be regularly updated and are publicly available through a web portal, Open Targets Genetics (OTG, http://genetics.opentargets.org ), enabling users to easily prioritize genes at disease-associated loci and assess their potential as drug targets.
94
Citation17
0
Save
0

Designing an intuitive web application for drug discovery scientists

Nikiforos Karamanis et al.Jul 27, 2017
+17
S
M
N
Although a scientific web application that is intuitive can help scientists utilize data more easily and advance their research, there is little guidance on how to design such an application in the academic literature. We discuss how we designed an intuitive application for bench scientists working in drug discovery following an approach that can be applied to the design and development of scientific resources in a broad range of disciplines.