JB
John Benjamin
Author with expertise in Neonatal Lung Development and Respiratory Morbidity
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(100% Open Access)
Cited by:
23
h-index:
27
/
i10-index:
40
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
53

Age-determined expression of priming protease TMPRSS2 and localization of SARS-CoV-2 infection in the lung epithelium

Bryce Schuler et al.May 23, 2020
+15
E
A
B
Abstract The SARS-CoV-2 novel coronavirus global pandemic (COVID-19) has led to millions of cases and hundreds of thousands of deaths around the globe. While the elderly appear at high risk for severe disease, hospitalizations and deaths due to SARS-CoV-2 among children have been relatively rare. Integrating single-cell RNA sequencing (scRNA-seq) of the developing mouse lung with temporally-resolved RNA-in-situ hybridization (ISH) in mouse and human lung tissue, we found that expression of SARS-CoV-2 Spike protein primer TMPRSS2 was highest in ciliated cells and type I alveolar epithelial cells (AT1), and TMPRSS2 expression was increased with aging in mice and humans. Analysis of autopsy tissue from fatal COVID-19 cases revealed SARS-CoV-2 RNA was detected most frequently in ciliated and secretory cells in the airway epithelium and AT1 cells in the peripheral lung. SARS-CoV-2 RNA was highly colocalized in cells expressing TMPRSS2. Together, these data demonstrate the cellular spectrum infected by SARS-CoV-2 in the lung epithelium, and suggest that developmental regulation of TMPRSS2 may underlie the relative protection of infants and children from severe respiratory illness.
53
Citation19
0
Save
0

Comparison of Synergy Extrapolation and Static Optimization for Estimating Multiple Unmeasured Muscle Activations during Walking

Di Ao et al.Mar 6, 2024
J
B
A
D
Abstract Background Calibrated electromyography (EMG)-driven musculoskeletal models can provide great insight into internal quantities (e.g., muscle forces) that are difficult or impossible to measure experimentally. However, the need for EMG data from all involved muscles presents a significant barrier to the widespread application of EMG-driven modeling methods. Synergy extrapolation (SynX) is a computational method that can estimate a single missing EMG signal with reasonable accuracy during the EMG-driven model calibration process, yet its performance in estimating a larger number of missing EMG signals remains unclear. Methods This study assessed the accuracy with which SynX can use eight measured EMG signals to estimate muscle activations and forces associated with eight missing EMG signals in the same leg during walking while simultaneously performing EMG-driven model calibration. Experimental gait data collected from two individuals post-stroke, including 16 channels of EMG data per leg, were used to calibrate an EMG-driven musculoskeletal model, providing “gold standard” muscle activations and forces for evaluation purposes. SynX was then used to predict the muscle activations and forces associated with the eight missing EMG signals while simultaneously calibrating EMG-driven model parameter values. Due to its widespread use, static optimization (SO) was also utilized to estimate the same muscle activations and forces. Estimation accuracy for SynX and SO was evaluated using root mean square errors (RMSE) to quantify amplitude errors and correlation coefficient r values to quantify shape similarity, each calculated with respect to “gold standard” muscle activations and forces. Results On average, SynX produced significantly more accurate amplitude and shape estimates for unmeasured muscle activations (RMSE 0.08 vs. 0.15, r value 0.55 vs. 0.12) and forces (RMSE 101.3 N vs. 174.4 N, r value 0.53 vs. 0.07) compared to SO. SynX yielded calibrated Hill-type muscle-tendon model parameter values for all muscles and activation dynamics model parameter values for measured muscles that were similar to “gold standard” calibrated model parameter values. Conclusions These findings suggest that SynX could make it possible to calibrate EMG-driven musculoskeletal models for all important lower-extremity muscles with as few as eight carefully chosen EMG signals and eventually contribute to the design of personalized rehabilitation and surgical interventions for mobility impairments.
9

Alveolar Repair Following Lipopolysaccharide-induced Injury Requires Cell-Extracellular Matrix Interactions

Jennifer Sucre et al.Aug 6, 2022
+14
F
Y
J
Abstract During alveolar repair, alveolar type 2 (AT2) epithelial cell progenitors rapidly proliferate and differentiate into flat type 1 alveolar epithelial cells. Failure of normal alveolar repair mechanisms can lead to loss of alveolar structure (emphysema) or development of fibrosis, depending on the type and severity of injury. To test if β1-containing integrins are required during repair following acute injury, we administered E. coli lipopolysaccharide (LPS) by intratracheal injection to mice with a post-developmental deletion of β1 integrin in AT2 cells. While control mice recovered from LPS injury without structural abnormalities, β1-deficient mice had more severe inflammation and developed emphysema. In addition, recovering alveoli were repopulated with an abundance of rounded epithelial cells co-expressing type 2, type 1, and mixed intermediate cell state markers, with few mature type 1 cells. β1-deficient AT2 cells showed persistently increased proliferation after injury, which was blocked by inhibiting NF-κB activation in these cells. Lineage tracing experiments revealed that β1-deficient AT2 cells failed to differentiate into mature type 1 alveolar epithelial cells. Together, these findings demonstrate that functional alveolar repair after injury with terminal alveolar epithelial differentiation requires β1-containing integrins.
9
Citation1
0
Save
41

Epithelial Outgrowth Through Mesenchymal Rings Drives Alveologenesis

Nicholas Negretti et al.Oct 10, 2022
+21
C
Y
N
Abstract Determining how alveoli are formed and maintained is critical to understanding lung organogenesis and regeneration after injury. While technological barriers have heretofore limited real-time observation of alveologenesis, we have now used scanned oblique plane illumination microscopy of living lung slices to observe specific cellular behaviors at high resolution over several days. Contrary to the prevailing paradigm that alveoli form by airspace subdivision via ingrowing septa, we find that alveoli form by ballooning epithelial outgrowth supported by stable mesenchymal ring structures. Our systematic analysis allowed creation of a computational model of finely-timed cellular structural changes that drive alveologenesis under normal conditions or with perturbed intercellular Wnt signaling. This new paradigm and platform can be leveraged for mechanistic studies and screening for therapies to promote lung regeneration. One-Sentence Summary Long-term live analysis of neonatal lungs supports a dynamic epithelial outgrowth model for alveologenesis.
28

A Single Cell Atlas of Lung Development

Nicholas Negretti et al.Jan 22, 2021
+12
J
E
N
Summary Lung organogenesis requires precisely timed shifts in the spatial organization and function of parenchymal cells, especially during the later stages of lung development. To investigate the mechanisms governing lung parenchymal dynamics during development, we performed a single cell RNA sequencing (scRNA-seq) time-series yielding 92,238 epithelial, endothelial, and mesenchymal cells across 8 time points from embryonic day 12 (E12) to postnatal day 14 (P14) in mice. We combined new computational analyses with RNA in situ hybridization to explore transcriptional velocity, fate likelihood prediction, and spatiotemporal localization of cell populations during the transition between the saccular and alveolar stages. We interrogated this atlas to illustrate the complexity of type 1 pneumocyte function during the saccular and alveolar stages, and we demonstrate an integrated view of the cellular dynamics during lung development.