SP
Sepideh Parhami
Author with expertise in Role of Microglia in Neurological Disorders
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
1,086
h-index:
5
/
i10-index:
5
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder

Michael Gandal et al.Dec 13, 2018
INTRODUCTION Our understanding of the pathophysiology of psychiatric disorders, including autism spectrum disorder (ASD), schizophrenia (SCZ), and bipolar disorder (BD), lags behind other fields of medicine. The diagnosis and study of these disorders currently depend on behavioral, symptomatic characterization. Defining genetic contributions to disease risk allows for biological, mechanistic understanding but is challenged by genetic complexity, polygenicity, and the lack of a cohesive neurobiological model to interpret findings. RATIONALE The transcriptome represents a quantitative phenotype that provides biological context for understanding the molecular pathways disrupted in major psychiatric disorders. RNA sequencing (RNA-seq) in a large cohort of cases and controls can advance our knowledge of the biology disrupted in each disorder and provide a foundational resource for integration with genomic and genetic data. RESULTS Analysis across multiple levels of transcriptomic organization—gene expression, local splicing, transcript isoform expression, and coexpression networks for both protein-coding and noncoding genes—provides an in-depth view of ASD, SCZ, and BD molecular pathology. More than 25% of the transcriptome exhibits differential splicing or expression in at least one disorder, including hundreds of noncoding RNAs (ncRNAs), most of which have unexplored functions but collectively exhibit patterns of selective constraint. Changes at the isoform level, as opposed to the gene level, show the largest effect sizes and genetic enrichment and the greatest disease specificity. We identified coexpression modules associated with each disorder, many with enrichment for cell type–specific markers, and several modules significantly dysregulated across all three disorders. These enabled parsing of down-regulated neuronal and synaptic components into a variety of cell type– and disease-specific signals, including multiple excitatory neuron and distinct interneuron modules with differential patterns of disease association, as well as common and rare genetic risk variant enrichment. The glial-immune signal demonstrates shared disruption of the blood-brain barrier and up-regulation of NFkB-associated genes, as well as disease-specific alterations in microglial-, astrocyte-, and interferon-response modules. A coexpression module associated with psychiatric medication exposure in SCZ and BD was enriched for activity-dependent immediate early gene pathways. To identify causal drivers, we integrated polygenic risk scores and performed a transcriptome-wide association study and summary-data–based Mendelian randomization. Candidate risk genes—5 in ASD, 11 in BD, and 64 in SCZ, including shared genes between SCZ and BD—are supported by multiple methods. These analyses begin to define a mechanistic basis for the composite activity of genetic risk variants. CONCLUSION Integration of RNA-seq and genetic data from ASD, SCZ, and BD provides a quantitative, genome-wide resource for mechanistic insight and therapeutic development at Resource.PsychENCODE.org. These data inform the molecular pathways and cell types involved, emphasizing the importance of splicing and isoform-level gene regulatory mechanisms in defining cell type and disease specificity, and, when integrated with genome-wide association studies, permit the discovery of candidate risk genes. The PsychENCODE cross-disorder transcriptomic resource. Human brain RNA-seq was integrated with genotypes across individuals with ASD, SCZ, BD, and controls, identifying pervasive dysregulation, including protein-coding, noncoding, splicing, and isoform-level changes. Systems-level and integrative genomic analyses prioritize previously unknown neurogenetic mechanisms and provide insight into the molecular neuropathology of these disorders.
0
Citation985
0
Save
0

Broad transcriptomic dysregulation occurs across the cerebral cortex in ASD

Michael Gandal et al.Nov 2, 2022
Abstract Neuropsychiatric disorders classically lack defining brain pathologies, but recent work has demonstrated dysregulation at the molecular level, characterized by transcriptomic and epigenetic alterations 1–3 . In autism spectrum disorder (ASD), this molecular pathology involves the upregulation of microglial, astrocyte and neural–immune genes, the downregulation of synaptic genes, and attenuation of gene-expression gradients in cortex 1,2,4–6 . However, whether these changes are limited to cortical association regions or are more widespread remains unknown. To address this issue, we performed RNA-sequencing analysis of 725 brain samples spanning 11 cortical areas from 112 post-mortem samples from individuals with ASD and neurotypical controls. We find widespread transcriptomic changes across the cortex in ASD, exhibiting an anterior-to-posterior gradient, with the greatest differences in primary visual cortex, coincident with an attenuation of the typical transcriptomic differences between cortical regions. Single-nucleus RNA-sequencing and methylation profiling demonstrate that this robust molecular signature reflects changes in cell-type-specific gene expression, particularly affecting excitatory neurons and glia. Both rare and common ASD-associated genetic variation converge within a downregulated co-expression module involving synaptic signalling, and common variation alone is enriched within a module of upregulated protein chaperone genes. These results highlight widespread molecular changes across the cerebral cortex in ASD, extending beyond association cortex to broadly involve primary sensory regions.
0
Citation85
-1
Save
29

Broad transcriptomic dysregulation across the cerebral cortex in ASD

Jillian Haney et al.Dec 18, 2020
Abstract Classically, psychiatric disorders have been considered to lack defining pathology, but recent work has demonstrated consistent disruption at the molecular level, characterized by transcriptomic and epigenetic alterations. 1–3 In ASD, upregulation of microglial, astrocyte, and immune signaling genes, downregulation of specific synaptic genes, and attenuation of regional gene expression differences are observed. 1,2,4–6 However, whether these changes are limited to the cortical association areas profiled is unknown. Here, we perform RNA-sequencing (RNA-seq) on 725 brain samples spanning 11 distinct cortical areas in 112 ASD cases and neurotypical controls. We identify substantially more genes and isoforms that differentiate ASD from controls than previously observed. These alterations are pervasive and cortex-wide, but vary in magnitude across regions, roughly showing an anterior to posterior gradient, with the strongest signal in visual cortex, followed by parietal cortex and the temporal lobe. We find a notable enrichment of ASD genetic risk variants among cortex-wide downregulated synaptic plasticity genes and upregulated protein folding gene isoforms. Finally, using snRNA-seq, we determine that regional variation in the magnitude of transcriptomic dysregulation reflects changes in cellular proportion and cell-type-specific gene expression, particularly impacting L3/4 excitatory neurons. These results highlight widespread, genetically-driven neuronal dysfunction as a major component of ASD pathology in the cerebral cortex, extending beyond association cortices to involve primary sensory regions.
29
Citation16
0
Save
0

Alterations in retrotransposition, synaptic connectivity, and myelination implicated by transcriptomic changes following maternal immune activation in non-human primates

Nicholas Page et al.Apr 1, 2020
Maternal immune activation (MIA) is a proposed risk factor for multiple neurodevelopmental and psychiatric disorders, including schizophrenia. However, the molecular and neurobiological mechanisms through which MIA imparts risk for these disorders remain poorly understood. A recently developed nonhuman primate model of exposure to the viral mimic poly:ICLC during pregnancy shows abnormal social and repetitive behaviors and elevated striatal dopamine, a molecular hallmark of human psychosis, providing an unprecedented opportunity for mechanistic dissection. We performed RNA-sequencing across four psychiatrically-relevant brain regions (prefrontal cortex, anterior cingulate, hippocampus, and primary visual cortex) from 3.5-4-year old male MIA-exposed and control offspring, an age comparable to mid adolescence in humans. We identify 266 unique genes differentially expressed (DE) in at least one brain region with the greatest number observed in hippocampus. Co-expression networks identified region-specific alterations in synaptic signaling and oligodendrocytes. Across regions, we observed temporal and regional differences, but transcriptomic changes were largely similar across 1st or 2nd trimester MIA exposures, including for the top DE genes, PIWIL2 and MGARP. In addition to PIWIL2, several other known regulators of retrotransposition, as well as endogenous transposable elements were dysregulated in MIA offspring. Together, these results begin to elucidate the brain-level molecular mechanisms through which MIA may impart risk for psychiatric disease.