GH
Gil Hoftman
Author with expertise in Comprehensive Integration of Single-Cell Transcriptomic Data
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
101
h-index:
15
/
i10-index:
16
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Broad transcriptomic dysregulation occurs across the cerebral cortex in ASD

Michael Gandal et al.Nov 2, 2022
+23
B
J
M
Abstract Neuropsychiatric disorders classically lack defining brain pathologies, but recent work has demonstrated dysregulation at the molecular level, characterized by transcriptomic and epigenetic alterations 1–3 . In autism spectrum disorder (ASD), this molecular pathology involves the upregulation of microglial, astrocyte and neural–immune genes, the downregulation of synaptic genes, and attenuation of gene-expression gradients in cortex 1,2,4–6 . However, whether these changes are limited to cortical association regions or are more widespread remains unknown. To address this issue, we performed RNA-sequencing analysis of 725 brain samples spanning 11 cortical areas from 112 post-mortem samples from individuals with ASD and neurotypical controls. We find widespread transcriptomic changes across the cortex in ASD, exhibiting an anterior-to-posterior gradient, with the greatest differences in primary visual cortex, coincident with an attenuation of the typical transcriptomic differences between cortical regions. Single-nucleus RNA-sequencing and methylation profiling demonstrate that this robust molecular signature reflects changes in cell-type-specific gene expression, particularly affecting excitatory neurons and glia. Both rare and common ASD-associated genetic variation converge within a downregulated co-expression module involving synaptic signalling, and common variation alone is enriched within a module of upregulated protein chaperone genes. These results highlight widespread molecular changes across the cerebral cortex in ASD, extending beyond association cortex to broadly involve primary sensory regions.
0
Citation85
-1
Save
29

Broad transcriptomic dysregulation across the cerebral cortex in ASD

Jillian Haney et al.Dec 18, 2020
+19
G
B
J
Abstract Classically, psychiatric disorders have been considered to lack defining pathology, but recent work has demonstrated consistent disruption at the molecular level, characterized by transcriptomic and epigenetic alterations. 1–3 In ASD, upregulation of microglial, astrocyte, and immune signaling genes, downregulation of specific synaptic genes, and attenuation of regional gene expression differences are observed. 1,2,4–6 However, whether these changes are limited to the cortical association areas profiled is unknown. Here, we perform RNA-sequencing (RNA-seq) on 725 brain samples spanning 11 distinct cortical areas in 112 ASD cases and neurotypical controls. We identify substantially more genes and isoforms that differentiate ASD from controls than previously observed. These alterations are pervasive and cortex-wide, but vary in magnitude across regions, roughly showing an anterior to posterior gradient, with the strongest signal in visual cortex, followed by parietal cortex and the temporal lobe. We find a notable enrichment of ASD genetic risk variants among cortex-wide downregulated synaptic plasticity genes and upregulated protein folding gene isoforms. Finally, using snRNA-seq, we determine that regional variation in the magnitude of transcriptomic dysregulation reflects changes in cellular proportion and cell-type-specific gene expression, particularly impacting L3/4 excitatory neurons. These results highlight widespread, genetically-driven neuronal dysfunction as a major component of ASD pathology in the cerebral cortex, extending beyond association cortices to involve primary sensory regions.
29
Citation16
0
Save
0

Unique functional neuroimaging signatures of genetic versus clinical high risk for psychosis

Charles Schleifer et al.Aug 1, 2024
+25
C
S
C
22q11.2 Deletion Syndrome (22qDel) is a copy number variant (CNV) associated with psychosis and other neurodevelopmental disorders. Adolescents at clinical high risk for psychosis (CHR) are identified based on the presence of subthreshold psychosis symptoms. Whether common neural substrates underlie these distinct high-risk populations is unknown. We compared functional brain measures in 22qDel and CHR cohorts and mapped results to biological pathways.
0

Unique functional neuroimaging signatures of genetic versus clinical high risk for psychosis

Charles Schleifer et al.Apr 5, 2024
+25
C
S
C
Abstract Background 22q11.2 Deletion Syndrome (22qDel) is a copy number variant (CNV) associated with psychosis and other neurodevelopmental disorders. Adolescents at clinical high risk for psychosis (CHR) have subthreshold psychosis symptoms without known genetic risk factors. Whether common neural substrates underlie these distinct high-risk populations is unknown. We compared functional brain measures in 22qDel and CHR cohorts and mapped results to biological pathways. Methods We analyzed two large multi-site cohorts with resting-state functional MRI (rs-fMRI): 1) 22qDel (n=164, 47% female) and typically developing (TD) controls (n=134, 56% female); 2) CHR individuals (n=244, 41% female) and TD controls (n=151, 46% female) from the North American Prodrome Longitudinal Study-2. We computed global brain connectivity (GBC), local connectivity (LC), and brain signal variability (BSV) across cortical regions, testing case-control differences for 22qDel and CHR separately. Group difference maps were related to published brain maps using autocorrelation-preserving permutation. Results BSV, LC, and GBC are significantly disrupted in 22qDel compared with TD controls (False Discovery Rate q<0.05). Spatial maps of BSV and LC differences are highly correlated with each other, unlike GBC. In CHR, only LC is significantly altered versus controls, with a different spatial pattern compared to 22qDel. Group differences map onto biological gradients, with 22qDel effects strongest in regions with high predicted blood flow and metabolism. Conclusion 22qDel and CHR exhibit divergent effects on fMRI temporal variability and multi-scale functional connectivity. In 22qDel, strong and convergent disruptions in BSV and LC not seen in CHR individuals suggest distinct functional brain alterations.