JC
Jessica Cortez
Author with expertise in Natural Killer Cells in Immunity
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(80% Open Access)
Cited by:
20
h-index:
8
/
i10-index:
7
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
159

Systematic discovery and perturbation of regulatory genes in human T cells reveals the architecture of immune networks

Jacob Freimer et al.Apr 19, 2021
Summary Complex gene regulatory networks ensure that important genes are expressed at precise levels. When gene expression is sufficiently perturbed it can lead to disease. To understand how gene expression disruptions percolate through a network, we must first map connections between regulatory genes and their downstream targets. However, we lack comprehensive knowledge of the upstream regulators of most genes. Here we developed an approach for systematic discovery of upstream regulators of critical immune factors – IL2RA, IL-2, and CTLA4 – in primary human T cells. Then, we mapped the network of these regulators’ target genes and enhancers using CRISPR perturbations, RNA-Seq, and ATAC-Seq. These regulators form densely interconnected networks with extensive feedback loops. Furthermore, this network is highly enriched for immune-associated disease variants and genes. These results provide insight into how immune-associated disease genes are regulated in T cells and broader principles about the structure of human gene regulatory networks. Highlights A systematic approach to identify upstream regulators of key immune genes in primary human cells Comprehensive RNA-Seq and ATAC-Seq perturbation maps after KO of individual discovered regulators Analysis uncovers a highly interconnected regulatory network of enhancers and genes in T cells This network is highly enriched for immune disease variants and genes shedding light on the trans-regulatory connections among key immune genes in health and disease
159
Citation15
0
Save
30

T cell subset-selective IL2RA enhancers shape autoimmune diabetes risk

Dimitre Simeonov et al.Jul 22, 2020
The majority of genetic variants associated with complex human autoimmune diseases reside in enhancers 1–3 , non-coding regulatory elements that control gene expression. In contrast with variants that directly alter protein-coding sequences, enhancer variants are predicted to tune gene expression modestly and function in specific cellular contexts 4 , suggesting that small alterations in the functions of key immune cell populations are sufficient to shape disease risk. Here we tested this concept by experimentally perturbing distinct enhancers governing the high affinity IL-2 receptor alpha chain (IL2RA; also known as CD25). IL2RA is an immune regulator that promotes the pro- and anti-inflammatory functions of conventional T cells (Tconvs) and regulatory T cells (Tregs), respectively, and non-coding genetic variants in IL2RA have been linked to multiple autoimmune disorders 4 . We previously tiled across the IL2RA locus using CRISPR-activation and identified a stimulation-responsive element (CaRE4) with an enhancer that modestly affects the kinetics of IL2RA expression in Tconvs 5 . This enhancer is conserved across species and harbors a common human SNP associated with protection from Type 1 Diabetes (T1D) 5,6 . We now identified an additional conserved enhancer, termed CaRE3 enhancer, which modestly affected steady state IL2RA expression in regulatory T cells (Tregs). Despite their seemingly subtle impact on gene expression, the CaRE3 and CaRE4 enhancers had pronounced yet divergent effects on the incidence of diabetes in autoimmune prone animals. Deletion of the conserved CaRE4 enhancer completely protected against autoimmune diabetes even in animals treated with an immunostimulating anti-PD1 checkpoint inhibitor, whereas deletion of the CaRE3 enhancer accelerated spontaneous disease progression. Quantitative multiplexed imaging of the pancreatic lymph nodes (panLNs) revealed that each enhancer deletion preferentially affected the protein expression levels of IL2RA in activated Tconvs or Tregs, reciprocally tuning local competition for IL-2 input signals. In animals lacking the CaRE4 enhancer, skewed IL-2 signaling favored Tregs, increasing their local density around activated Tconvs to strongly suppress emergence of autoimmune effectors. By contrast, in animals lacking the CaRE3 enhancer, IL-2 signals were skewed towards activated Tconvs, promoting their escape from Treg control. Collectively, this work illustrates how subtle changes in gene regulation due to non-coding variation can significantly alter disease progression and how distinct enhancers controlling the same gene can have opposing effects on disease outcomes through cell type-selective activity.
30
Citation5
0
Save
0

CRISPR Screen in Regulatory T Cells Reveals Ubiquitination Modulators of Foxp3

Jessica Cortez et al.Feb 27, 2020
Regulatory T cells (Tregs) are required to control immune responses and maintain homeostasis but are a significant barrier to anti-tumor immunity. Conversely, Treg instability, characterized by loss of the master transcription factor Foxp3 and acquisition of pro-inflammatory properties, can promote autoimmunity and/or facilitate more effective tumor immunity. A comprehensive understanding of the pathways that regulate Foxp3 could lead to more effective Treg therapies for autoimmune disease and cancer. Despite improved functional genetic tools that now allow for systematic interrogation, dissection of the gene regulatory programs that modulate Foxp3 expression has not yet been reported. In this study, we developed a CRISPR-based pooled screening platform for phenotypes in primary mouse Tregs and applied this technology to perform a targeted loss-of-function screen of ~490 nuclear factors to identify gene regulatory programs that promote or disrupt Foxp3 expression. We discovered several novel modulators including ubiquitin-specific peptidase 22 (Usp22), Ataxin 7 like 3 (Atxn7l3) and ring finger protein 20 (Rnf20). Members of the deubiquitination module of the SAGA chromatin modifying complex, Usp22 and Atxn7l3, were discovered to be positive regulators that stabilized Foxp3 expression; whereas the screen suggested Rnf20, an E3 ubiquitin ligase, is a negative regulator of Foxp3. Treg-specific ablation of Usp22 in mice reduced Foxp3 protein and created defects in their suppressive function that led to spontaneous autoimmunity but protected against tumor growth in multiple cancer models. Foxp3 destabilization in Usp22-deficient Tregs could be rescued by ablation of Rnf20, revealing a reciprocal ubiquitin switch in Tregs. These results reveal novel modulators of Foxp3 and demonstrate a screening method that can be broadly applied to discover new targets for Treg immunotherapies for cancer and autoimmune disease.
1

Non-coding sequence variation reveals fragility within interleukin 2 feedback circuitry and shapes autoimmune disease risk

Dimitre Simeonov et al.Jun 18, 2023
Genetic variants associated with human autoimmune diseases commonly map to non-coding control regions, particularly enhancers that function selectively in immune cells and fine-tune gene expression within a relatively narrow range of values. How such modest, cell-type-selective changes can meaningfully shape organismal disease risk remains unclear. To explore this issue, we experimentally manipulated species-conserved enhancers within the disease-associated IL2RA locus and studied accompanying changes in the progression of autoimmunity. Perturbing distinct enhancers with restricted activity in conventional T cells (Tconvs) or regulatory T cells (Tregs)—two functionally antagonistic T cell subsets—caused only modest, cell-type-selective decreases in IL2ra expression parameters. However, these same perturbations had striking and opposing effects in vivo , completely preventing or severely accelerating disease in a murine model of type 1 diabetes. Quantitative tissue imaging and computational modelling revealed that each enhancer manipulation impinged on distinct IL-2-dependent feedback circuits. These imbalances altered the intracellular signaling and intercellular communication dynamics of activated Tregs and Tconvs, producing opposing spatial domains that amplified or constrained ongoing autoimmune responses. These findings demonstrate how subtle changes in gene regulation stemming from non-coding variation can propagate across biological scales due to non-linearities in intra- and intercellular feedback circuitry, dramatically shaping disease risk at the organismal level.