SB
Scott Boyken
Author with expertise in Coronavirus Disease 2019 Research
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
6
(83% Open Access)
Cited by:
133
h-index:
23
/
i10-index:
32
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
2

Multivalent designed proteins neutralize SARS-CoV-2 variants of concern and confer protection against infection in mice

Andrew Hunt et al.May 25, 2022
+44
Y
J
A
New variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continue to arise and prolong the coronavirus disease 2019 (COVID-19) pandemic. Here, we used a cell-free expression workflow to rapidly screen and optimize constructs containing multiple computationally designed miniprotein inhibitors of SARS-CoV-2. We found the broadest efficacy was achieved with a homotrimeric version of the 75-residue angiotensin-converting enzyme 2 (ACE2) mimic AHB2 (TRI2-2) designed to geometrically match the trimeric spike architecture. Consistent with the design model, in the cryo-electron microscopy structure TRI2-2 forms a tripod at the apex of the spike protein that engaged all three receptor binding domains simultaneously. TRI2-2 neutralized Omicron (B.1.1.529), Delta (B.1.617.2), and all other variants tested with greater potency than the monoclonal antibodies used clinically for the treatment of COVID-19. TRI2-2 also conferred prophylactic and therapeutic protection against SARS-CoV-2 challenge when administered intranasally in mice. Designed miniprotein receptor mimics geometrically arrayed to match pathogen receptor binding sites could be a widely applicable antiviral therapeutic strategy with advantages over antibodies in greater resistance to viral escape and antigenic drift, and advantages over native receptor traps in lower chances of autoimmune responses.
2
Citation74
1
Save
3

Computational design of mechanically coupled axle-rotor protein assemblies

Alexis Courbet et al.Apr 22, 2022
+17
Y
J
A
Natural molecular machines contain protein components that undergo motion relative to each other. Designing such mechanically constrained nanoscale protein architectures with internal degrees of freedom is an outstanding challenge for computational protein design. Here we explore the de novo construction of protein machinery from designed axle and rotor components with internal cyclic or dihedral symmetry. We find that the axle-rotor systems assemble in vitro and in vivo as designed. Using cryo-electron microscopy, we find that these systems populate conformationally variable relative orientations reflecting the symmetry of the coupled components and the computationally designed interface energy landscape. These mechanical systems with internal degrees of freedom are a step toward the design of genetically encodable nanomachines.
3
Paper
Citation34
1
Save
18

Multivalent designed proteins protect against SARS-CoV-2 variants of concern

Andrew Hunt et al.Jul 7, 2021
+46
Y
J
A
Escape variants of SARS-CoV-2 are threatening to prolong the COVID-19 pandemic. To address this challenge, we developed multivalent protein-based minibinders as potential prophylactic and therapeutic agents. Homotrimers of single minibinders and fusions of three distinct minibinders were designed to geometrically match the SARS-CoV-2 spike (S) trimer architecture and were optimized by cell-free expression and found to exhibit virtually no measurable dissociation upon binding. Cryo-electron microscopy (cryoEM) showed that these trivalent minibinders engage all three receptor binding domains on a single S trimer. The top candidates neutralize SARS-CoV-2 variants of concern with IC 50 values in the low pM range, resist viral escape, and provide protection in highly vulnerable human ACE2-expressing transgenic mice, both prophylactically and therapeutically. Our integrated workflow promises to accelerate the design of mutationally resilient therapeutics for pandemic preparedness.We designed, developed, and characterized potent, trivalent miniprotein binders that provide prophylactic and therapeutic protection against emerging SARS-CoV-2 variants of concern.
82

De novo design of modular and tunable allosteric biosensors

Alfredo Quijano‐Rubio et al.Jul 20, 2020
+13
R
H
A
Naturally occurring allosteric protein switches have been repurposed for developing novel biosensors and reporters for cellular and clinical applications 1 , but the number of such switches is limited, and engineering them is often challenging as each is different. Here, we show that a very general class of allosteric protein-based biosensors can be created by inverting the flow of information through de novo designed protein switches in which binding of a peptide key triggers biological outputs of interest 2 . Using broadly applicable design principles, we allosterically couple binding of protein analytes of interest to the reconstitution of luciferase activity and a bioluminescent readout through the association of designed lock and key proteins. Because the sensor is based purely on thermodynamic coupling of analyte binding to switch activation, only one target binding domain is required, which simplifies sensor design and allows direct readout in solution. We demonstrate the modularity of this platform by creating biosensors that, with little optimization, sensitively detect the anti-apoptosis protein Bcl-2, the hIgG1 Fc domain, the Her2 receptor, and Botulinum neurotoxin B, as well as biosensors for cardiac Troponin I and an anti-Hepatitis B virus (HBV) antibody that achieve the sub-nanomolar sensitivity necessary to detect clinically relevant concentrations of these molecules. Given the current need for diagnostic tools for tracking COVID-19 3 , we use the approach to design sensors of antibodies against SARS-CoV-2 protein epitopes and of the receptor-binding domain (RBD) of the SARS-CoV-2 Spike protein. The latter, which incorporates a de novo designed RBD binder, has a limit of detection of 15pM with an up to seventeen fold increase in luminescence upon addition of RBD. The modularity and sensitivity of the platform should enable the rapid construction of sensors for a wide range of analytes and highlights the power of de novo protein design to create multi-state protein systems with new and useful functions.
82
Citation9
0
Save
14

Computational design of nanoscale rotational mechanics in de novo protein assemblies

Alexis Courbet et al.Nov 12, 2021
+16
Y
J
A
Abstract Natural nanomachines like the F 1 /F 0 -ATPase contain protein components that undergo rotation relative to each other. Designing such mechanically constrained nanoscale protein architectures with internal degrees of freedom is an outstanding challenge for computational protein design. Here we explore the de novo construction of protein rotary machinery from designed axle and ring components. Using cryoelectron microscopy, we find that axle-ring systems assemble as designed and populate diverse rotational states depending on symmetry match or mismatch and the designed interface energy landscape. These mechanical systems with internal rotational degrees of freedom are a step towards the systematic design of genetically encodable nanomachines. One-Sentence Summary Computationally designed self-assembling protein rotary machines sample internal degrees of freedom sculpted within the energy landscape.
14
Paper
Citation2
0
Save
0

Computational design of a protein family that adopts two well-defined and structurally divergent de novo folds

Kathy Wei et al.Apr 4, 2019
+8
M
D
K
The plasticity of naturally occurring protein structures, which can change shape considerably in response to changes in environmental conditions, is critical to biological function. While computational methods have been used to de novo design proteins that fold to a single state with a deep free energy minima (Huang et al., 2016), and to reengineer natural proteins to alter their dynamics (Davey et al., 2017) or fold (Alexander et al., 2009), the de novo design of closely related sequences which adopt well-defined, but structurally divergent structures remains an outstanding challenge. Here, we design closely related sequences (over 94% identity) that can adopt two very different homotrimeric helical bundle conformations -- one short (∼66 Å height) and the other long (∼100 Å height) -- reminiscent of the conformational transition of viral fusion proteins (Ivanovic et al., 2013; Podbilewicz, 2014; Skehel and Wiley, 2000). Crystallographic and NMR spectroscopic characterization show that both the short and long state sequences fold as designed. We sought to design bistable sequences for which both states are accessible, and obtained a single designed protein sequence that populates either the short state or the long state depending on the measurement conditions. The design of sequences which are poised to adopt two very different conformations sets the stage for creating large scale conformational switches between structurally divergent forms.