CY
Cai‐Hong Yun
Author with expertise in Advancements in Lung Cancer Research
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
9
(89% Open Access)
Cited by:
5,402
h-index:
36
/
i10-index:
58
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP

Cai‐Hong Yun et al.Jan 29, 2008
Lung cancers caused by activating mutations in the epidermal growth factor receptor (EGFR) are initially responsive to small molecule tyrosine kinase inhibitors (TKIs), but the efficacy of these agents is often limited because of the emergence of drug resistance conferred by a second mutation, T790M. Threonine 790 is the “gatekeeper” residue, an important determinant of inhibitor specificity in the ATP binding pocket. The T790M mutation has been thought to cause resistance by sterically blocking binding of TKIs such as gefitinib and erlotinib, but this explanation is difficult to reconcile with the fact that it remains sensitive to structurally similar irreversible inhibitors. Here, we show by using a direct binding assay that T790M mutants retain low-nanomolar affinity for gefitinib. Furthermore, we show that the T790M mutation activates WT EGFR and that introduction of the T790M mutation increases the ATP affinity of the oncogenic L858R mutant by more than an order of magnitude. The increased ATP affinity is the primary mechanism by which the T790M mutation confers drug resistance. Crystallographic analysis of the T790M mutant shows how it can adapt to accommodate tight binding of diverse inhibitors, including the irreversible inhibitor HKI-272, and also suggests a structural mechanism for catalytic activation. We conclude that the T790M mutation is a “generic” resistance mutation that will reduce the potency of any ATP-competitive kinase inhibitor and that irreversible inhibitors overcome this resistance simply through covalent binding, not as a result of an alternative binding mode.
0

Novel mutant-selective EGFR kinase inhibitors against EGFR T790M

Wenjun Zhou et al.Dec 1, 2009
Non-small-cell lung tumours with activating mutations in the epidermal growth factor receptor (EGFR) often show a clinical response to receptor inhibitors, but tend to develop resistance due to the additional EGFR T790M mutations. Pasi Jänne and colleagues now have developed a new class of EGFR inhibitor that selectively inhibits the mutant receptor, rather that the wild type, and also inhibits the T790M mutant. These compounds reduce tumour growth in a mouse model and may prove more clinically effective and better tolerated than current EGFR kinase inhibitors in clinical use. Non-small-cell lung cancers with activating mutations in the epidermal growth factor receptor (EGFR) often show a clinical response to EGFR kinase inhibitors but tend to develop drug-resistance mutations, including the gatekeeper T790M mutation. Here, a new class of EGFR inhibitors is developed; these agents are 30- to 100-fold more potent against EGFR with the T790M mutation, and up to 100-fold less potent against wild-type EGFR, than current EGFR inhibitors. The clinical efficacy of epidermal growth factor receptor (EGFR) kinase inhibitors in EGFR-mutant non-small-cell lung cancer (NSCLC) is limited by the development of drug-resistance mutations, including the gatekeeper T790M mutation1,2,3. Strategies targeting EGFR T790M with irreversible inhibitors have had limited success and are associated with toxicity due to concurrent inhibition of wild-type EGFR4,5. All current EGFR inhibitors possess a structurally related quinazoline-based core scaffold and were identified as ATP-competitive inhibitors of wild-type EGFR. Here we identify a covalent pyrimidine EGFR inhibitor by screening an irreversible kinase inhibitor library specifically against EGFR T790M. These agents are 30- to 100-fold more potent against EGFR T790M, and up to 100-fold less potent against wild-type EGFR, than quinazoline-based EGFR inhibitors in vitro. They are also effective in murine models of lung cancer driven by EGFR T790M. Co-crystallization studies reveal a structural basis for the increased potency and mutant selectivity of these agents. These mutant-selective irreversible EGFR kinase inhibitors may be clinically more effective and better tolerated than quinazoline-based inhibitors. Our findings demonstrate that functional pharmacological screens against clinically important mutant kinases represent a powerful strategy to identify new classes of mutant-selective kinase inhibitors.
0

Overcoming EGFR(T790M) and EGFR(C797S) resistance with mutant-selective allosteric inhibitors

Yong Jia et al.May 25, 2016
An allosteric inhibitor, EAI045, is reported that is selective for certain drug-resistant EGFR mutants, but spares the wild-type receptor; combination therapy of EAI045 with EGFR-dimerization-blocking antibodies is effective in mouse models of lung cancer driven by mutant versions of EGFR that are resistant to all previously developed inhibitors. Currently available small-molecule inhibitors targeting epidermal growth factor receptor (EGFR) and other receptor tyrosine kinases bind the ATP site of the kinase, and therefore typically inhibit a number of 'off-target' kinases owing to the high conservation of this site. In addition, the common binding site of these drugs leads to shared susceptibility to resistance-conferring mutations in EGFR. Here, Michael Eck and colleagues describe an allosteric inhibitor, EAI045, that is selective for certain drug-resistant EGFR mutants but spares the wild-type receptor. Although EAI045 is not effective in blocking EGFR-driven cell proliferation as a single agent, it has synergistic inhibitory activity when combined with an antibody that blocks EGFR dimerization. This combination therapy is effective in mouse models of lung cancer driven by mutant versions of EGFR that are resistant to all previously developed inhibitors. The epidermal growth factor receptor (EGFR)-directed tyrosine kinase inhibitors (TKIs) gefitinib, erlotinib and afatinib are approved treatments for non-small cell lung cancers harbouring activating mutations in the EGFR kinase1,2, but resistance arises rapidly, most frequently owing to the secondary T790M mutation within the ATP site of the receptor3,4. Recently developed mutant-selective irreversible inhibitors are highly active against the T790M mutant5,6, but their efficacy can be compromised by acquired mutation of C797, the cysteine residue with which they form a key covalent bond7. All current EGFR TKIs target the ATP-site of the kinase, highlighting the need for therapeutic agents with alternative mechanisms of action. Here we describe the rational discovery of EAI045, an allosteric inhibitor that targets selected drug-resistant EGFR mutants but spares the wild-type receptor. The crystal structure shows that the compound binds an allosteric site created by the displacement of the regulatory C-helix in an inactive conformation of the kinase. The compound inhibits L858R/T790M-mutant EGFR with low-nanomolar potency in biochemical assays. However, as a single agent it is not effective in blocking EGFR-driven proliferation in cells owing to differential potency on the two subunits of the dimeric receptor, which interact in an asymmetric manner in the active state8. We observe marked synergy of EAI045 with cetuximab, an antibody therapeutic that blocks EGFR dimerization9,10, rendering the kinase uniformly susceptible to the allosteric agent. EAI045 in combination with cetuximab is effective in mouse models of lung cancer driven by EGFR(L858R/T790M) and by EGFR(L858R/T790M/C797S), a mutant that is resistant to all currently available EGFR TKIs. More generally, our findings illustrate the utility of purposefully targeting allosteric sites to obtain mutant-selective inhibitors.
0
Citation698
0
Save
0

EGFR Mutations and Resistance to Irreversible Pyrimidine-Based EGFR Inhibitors

Dalia Ercan et al.May 7, 2015
Abstract Purpose: Mutant selective irreversible pyrimidine-based EGFR kinase inhibitors, including WZ4002, CO-1686, and AZD9291, are effective in preclinical models and in lung cancer patients harboring the EGFR T790M gefitinib/erlotinib resistance mutation. However, little is known about how cancers develop acquired resistance to this class of EGFR inhibitors. We sought to identify and study EGFR mutations that confer resistance to this class of agents. Experimental Design: We performed an N-ethyl-N-nitrosourea (ENU) mutagenesis screen in EGFR-mutant (sensitizing alone or with concurrent EGFR T790M) Ba/F3 cells and selected drug-resistant clones. We evaluated the sensitivity of EGFR inhibitors in models harboring drug-resistant EGFR mutations. Results: We identified 3 major drug resistance mutations. EGFR L718Q, L844V, and C797S cause resistance to both WZ4002 and CO-1686 while, in contrast, only EGFR C797S leads to AZD9291 resistance. Cells containing an EGFR-sensitizing mutation, Del 19 or L858R, in conjunction with L718Q, L844V, or C797S retain sensitivity to quinazoline-based EGFR inhibitors, gefitinib and afatinib. The C797S mutation, in the presence of Del 19 or L858R and T790M, causes resistance to all current EGFR inhibitors, but L858R/T790M/C797S remains partially sensitive to cetuximab which leads to disruption of EGFR dimerization. Conclusions: Our findings provide insights into resistance mechanisms to irreversible pyrimidine-based EGFR inhibitors and identify specific genomic contexts in which sensitivity is retained to existing clinical EGFR inhibitors. These findings will guide the development of new strategies to inhibit EGFR. Clin Cancer Res; 21(17); 3913–23. ©2015 AACR. See related commentary by Ayeni et al., p. 3818
0
Citation334
0
Save
136

Protein-Metabolite Interactomics Reveals Novel Regulation of Carbohydrate Metabolism

Kevin Hicks et al.Aug 28, 2021
Abstract Metabolism is highly interconnected and also has profound effects on other cellular processes. However, the interactions between metabolites and proteins that mediate this connectivity are frequently low affinity and difficult to discover, hampering our understanding of this important area of cellular biochemistry. Therefore, we developed the MIDAS platform, which can identify protein-metabolite interactions with great sensitivity. We analyzed 33 enzymes from central carbon metabolism and identified 830 protein-metabolite interactions that were mostly novel, but also included known regulators, substrates, products and their analogs. We validated previously unknown interactions, including two atomic-resolution structures of novel protein-metabolite complexes. We also found that both ATP and long-chain fatty acyl-CoAs inhibit lactate dehydrogenase A (LDHA), but not LDHB, at physiological concentrations in vitro . Treating cells with long-chain fatty acids caused a loss of pyruvate/lactate interconversion, but only in cells reliant on LDHA. We propose that these regulatory mechanisms are part of the metabolic connectivity that enables survival in an ever-changing nutrient environment, and that MIDAS enables a broader and deeper understanding of that network.
136
Citation14
0
Save