EC
Elisa Calle‐Mustienes
Author with expertise in Epigenetic Modifications and Their Functional Implications
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
6
(100% Open Access)
Cited by:
761
h-index:
29
/
i10-index:
33
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Amphioxus functional genomics and the origins of vertebrate gene regulation

Ferdinand Marlétaz et al.Nov 20, 2018
Vertebrates have greatly elaborated the basic chordate body plan and evolved highly distinctive genomes that have been sculpted by two whole-genome duplications. Here we sequence the genome of the Mediterranean amphioxus (Branchiostoma lanceolatum) and characterize DNA methylation, chromatin accessibility, histone modifications and transcriptomes across multiple developmental stages and adult tissues to investigate the evolution of the regulation of the chordate genome. Comparisons with vertebrates identify an intermediate stage in the evolution of differentially methylated enhancers, and a high conservation of gene expression and its cis-regulatory logic between amphioxus and vertebrates that occurs maximally at an earlier mid-embryonic phylotypic period. We analyse regulatory evolution after whole-genome duplications, and find that—in vertebrates—over 80% of broadly expressed gene families with multiple paralogues derived from whole-genome duplications have members that restricted their ancestral expression, and underwent specialization rather than subfunctionalization. Counter-intuitively, paralogues that restricted their expression increased the complexity of their regulatory landscapes. These data pave the way for a better understanding of the regulatory principles that underlie key vertebrate innovations. Genomic, epigenomic and transcriptomic data derived from the Mediterranean amphioxus (Branchiostoma lanceolatum) provide insights into the evolution of the genomic regulatory landscape of chordates.
0
Citation254
0
Save
0

Dynamics of enhancer chromatin signatures mark the transition from pluripotency to cell specification during embryogenesis

Ozren Bogdanović et al.May 16, 2012
The generation of distinctive cell types that form different tissues and organs requires precise, temporal and spatial control of gene expression. This depends on specific cis -regulatory elements distributed in the noncoding DNA surrounding their target genes. Studies performed on mammalian embryonic stem cells and Drosophila embryos suggest that active enhancers form part of a defined chromatin landscape marked by histone H3 lysine 4 mono-methylation (H3K4me1) and histone H3 lysine 27 acetylation (H3K27ac). Nevertheless, little is known about the dynamics and the potential roles of these marks during vertebrate embryogenesis. Here, we provide genomic maps of H3K4me1/me3 and H3K27ac at four developmental time-points of zebrafish embryogenesis and analyze embryonic enhancer activity. We find that (1) changes in H3K27ac enrichment at enhancers accompany the shift from pluripotency to tissue-specific gene expression, (2) in early embryos, the peaks of H3K27ac enrichment are bound by pluripotent factors such as Nanog, and (3) the degree of evolutionary conservation is higher for enhancers that become marked by H3K27ac at the end of gastrulation, suggesting their implication in the establishment of the most conserved (phylotypic) transcriptome that is known to occur later at the pharyngula stage.
0
Citation240
0
Save
87

The little skate genome and the evolutionary emergence of wing-like fin appendages

Ferdinand Marlétaz et al.Mar 22, 2022
Skates are cartilaginous fish whose novel body plan features remarkably enlarged wing-like pectoral fins that allow them to thrive in benthic environments. The molecular underpinnings of this unique trait, however, remain elusive. Here we investigate the origin of this phenotypic innovation by developing the little skate Leucoraja erinacea as a genomically enabled model. Analysis of a high-quality chromosome-scale genome sequence for the little skate shows that it preserves many ancestral jawed vertebrate features compared with other sequenced genomes, including numerous ancient microchromosomes. Combining genome comparisons with extensive regulatory datasets in developing fins (gene expression, chromatin occupancy and three-dimensional (3D) conformation) we find skate-specific genomic rearrangements that alter the 3D regulatory landscape of genes involved in the planar cell polarity (PCP) pathway. Functional inhibition of PCP signaling resulted in marked reduction of anterior fin size, confirming this pathway as a major contributor of batoid fin morphology. We also identified a fin-specific enhancer that interacts with 3' HOX genes, consistent with the redeployment of Hox gene expression in anterior pectoral fins, and confirmed the potential of this element to activate transcription in the anterior fin using zebrafish reporter assays. Our findings underscore the central role of genome reorganizations and regulatory variation in the evolution of phenotypes, shedding light on the molecular origin of an enigmatic trait.
87
Citation8
0
Save
89

CTCF knockout in zebrafish induces alterations in regulatory landscapes and developmental gene expression

Martin Franke et al.Sep 8, 2020
CTCF is an 11-zinc-finger DNA-binding protein that acts as a transcriptional repressor and insulator as well as an architectural protein required for 3D genome folding 1–5 . CTCF mediates long-range chromatin looping and is enriched at the boundaries of topologically associating domains, which are sub-megabase chromatin structures that are believed to facilitate enhancer-promoter interactions within regulatory landscapes 6–12 . Although CTCF is essential for cycling cells and developing embryos 13,14 , its in vitro removal has only modest effects over gene expression 5,15 , challenging the concept that CTCF-mediated chromatin interactions and topologically associated domains are a fundamental requirement for gene regulation 16–18 . Here we link the loss of chromatin structure and gene regulation in an in vivo model and during animal development. We generated a ctcf knockout mutant in zebrafish that allows us to monitor the effect of CTCF loss of function during embryo patterning and organogenesis. CTCF absence leads to loss of chromatin structure in zebrafish embryos and affects the expression of thousands of genes, including many developmental genes. In addition, chromatin accessibility, both at CTCF binding sites and cis -regulatory elements, is severely compromised in ctcf mutants. Probing chromatin interactions from developmental genes at high resolution, we further demonstrate that promoters fail to fully establish long-range contacts with their associated regulatory landscapes, leading to altered gene expression patterns and disruption of developmental programs. Our results demonstrate that CTCF and topologically associating domains are essential to regulate gene expression during embryonic development, providing the structural basis for the establishment of developmental gene regulatory landscapes.
89
Citation4
0
Save