MP
Marjory Pompilus
Author with expertise in Analysis of Brain Functional Connectivity Networks
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(86% Open Access)
Cited by:
0
h-index:
10
/
i10-index:
10
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Age-Related Differences in Emotional Behavior and Cognitive Function in Mice: Possible Role of Frontal Cortical-Hippocampal Functional Connectivity and Metabolomic Profiles

Marcelo Febo et al.Nov 15, 2023
Abstract The differential expression of emotional reactivity from early to late adulthood may involve maturation of prefrontal cortical responses to negative valence stimuli. In mice, age-related changes in affective behaviors have been reported, but the functional neural circuitry warrants further investigation. We assessed age variations in affective behaviors and functional connectivity in male and female C57BL6/J mice. Mice aged 10, 30 and 60 weeks (wo) were tested over 8 weeks for open field activity, sucrose preference, social interactions, fear conditioning, and functional neuroimaging. Prefrontal cortical and hippocampal tissues were excised for metabolomics. Our results indicate that young and old mice differ significantly in affective behavioral, functional connectome and prefrontal cortical-hippocampal metabolome. Young mice show a greater responsivity to novel environmental and social stimuli compared to older mice. Conversely, late middle-aged mice (60wo group) display variable patterns of fear conditioning and with re-testing with a modified context. Functional connectivity between a temporal cortical/auditory cortex network and subregions of the anterior cingulate cortex and ventral hippocampus, and a greater network modularity and assortative mixing of nodes was stronger in young versus older adult mice. Metabolome analyses identified differences in several essential amino acids between 10wo mice and the other age groups. The results support differential expression of ‘emotionality’ across distinct stages of the mouse lifespan involving greater prefrontal-hippocampal connectivity and neurochemistry.
0

Functional connectivity, tissue microstructure and T2 at 11.1 Tesla distinguishes neuroadaptive differences in two traumatic brain injury models in rats: A Translational Outcomes Project in NeuroTrauma (TOP-NT) UG3 phase study

Rohan Kommireddy et al.Dec 10, 2023
The damage caused by contusive traumatic brain injuries (TBIs) is thought to involve breakdown in neuronal communication through focal and diffuse axonal injury along with alterations to the neuronal chemical environment, which adversely affects neuronal networks beyond the injury epicenter(s). In the present study, functional connectivity along with brain tissue microstructure coupled with T2 relaxometry were assessed in two experimental TBI models in rat, controlled cortical impact (CCI) and lateral fluid percussive injury (LFPI). Rats were scanned on an 11.1 Tesla scanner on days 2 and 30 following either CCI or LFPI. Naive controls were scanned once and used as a baseline comparison for both TBI groups. Scanning included functional magnetic resonance imaging (fMRI), diffusion weighted images (DWI), and multi-echo T2 images. fMRI scans were analyzed for functional connectivity across laterally and medially located region of interests (ROIs) across the cortical mantle, hippocampus, and dorsal striatum. DWI scans were processed to generate maps of fractional anisotropy, mean, axial, and radial diffusivities (FA, MD, AD, RD). The analyses focused on cortical and white matter (WM) regions at or near the TBI epicenter. Our results indicate that rats exposed to CCI and LFPI had significantly increased contralateral intra-cortical connectivity at 2 days post-injury. This was observed across similar areas of the cortex in both groups. The increased contralateral connectivity was still observed by day 30 in CCI, but not LFPI rats. Although both CCI and LFPI had changes in WM and cortical FA and diffusivities, WM changes were most predominant in CCI and cortical changes in LFPI. Our results provide support for the use of multimodal MR imaging for different types of contusive and skull-penetrating injury.
4

Contextual experience modifies functional connectome indices of topological strength and organization

Marjory Pompilus et al.Jun 14, 2020
ABSTRACT Stimuli presented at short temporal delays before functional magnetic resonance imaging (fMRI) can have a robust impact on the organization of synchronous activity in resting state networks. This presents an opportunity to investigate how sensory, affective and cognitive stimuli alter functional connectivity in rodent models. In the present study, we assessed the effect of a familiar contextual stimulus presented 10 minutes prior to sedation for imaging on functional connectivity. A subset of animals were co-presented with an unfamiliar social stimulus in the same environment to further investigate the effect of familiarity on network topology. Female and male rats were imaged at 11.1 Tesla and graph theory analysis was applied to matrices generated from seed-based functional connectivity data sets with 144 brain regions (nodes) and 10,152 pairwise correlations (edges). Our results show an unconventional network topology in response to the familiar (context) but not the unfamiliar (social) stimulus. The familiar stimulus strongly reduced network strength, global efficiency, and altered the location of the highest eigenvector centrality nodes from cortex to the hypothalamus. We did not observe changes in modular organization, nodal cartographic assignments, assortative mixing, rich club organization, and network resilience. The results suggest that experiential factors, perhaps involving associative or episodic memory, can exert a dramatic effect on functional network strength and efficiency when presented at a short temporal delay before imaging.
1

StandardRat: A multi-center consensus protocol to enhance functional connectivity specificity in the rat brain

Joanes Grandjean et al.Apr 28, 2022
Abstract Task-free functional connectivity in animal models provides an experimental framework to examine connectivity phenomena under controlled conditions and allows comparison with invasive or terminal procedures. To date, animal acquisitions are performed with varying protocols and analyses that hamper result comparison and integration. We introduce StandardRat , a consensus rat functional MRI acquisition protocol tested across 20 centers. To develop this protocol with optimized acquisition and processing parameters, we initially aggregated 65 functional imaging datasets acquired in rats from 46 centers. We developed a reproducible pipeline for the analysis of rat data acquired with diverse protocols and determined experimental and processing parameters associated with a more robust functional connectivity detection. We show that the standardized protocol enhances biologically plausible functional connectivity patterns, relative to pre-existing acquisitions. The protocol and processing pipeline described here are openly shared with the neuroimaging community to promote interoperability and cooperation towards tackling the most important challenges in neuroscience.
0

Intestine-specific deletion of metal transporter Zip14 (Slc39a14) causes brain manganese overload and locomotor defects of manganism

Tolunay Aydemir et al.Jan 11, 2020
Impaired manganese (Mn) homeostasis can result in excess Mn accumulation in specific brain regions and neuropathology. Maintaining Mn homeostasis and detoxification is dependent on effective Mn elimination. Specific metal transporters control Mn homeostasis. Human carriers of mutations in the metal transporter ZIP14 and whole-body Zip14 KO (WB-KO) mice display similar phenotypes, including spontaneous systemic and brain Mn overload, and motor dysfunction. Initially, it was believed that Mn accumulation due to ZIP14 mutations caused by impaired hepatobiliary Mn elimination. However, liver-specific Zip14 KO mice (L-KO) did not show systemic Mn accumulation or motor deficits. ZIP14 is highly expressed in the small intestine and is localized to the basolateral surface of enterocytes. Thus we hypothesized that basolaterally-localized ZIP14 in enterocytes provides another route for elimination of Mn. Using wild type and intestine-specific ZIP14 KO (I-KO) mice, we have shown that ablation of intestinal Zip14 is sufficient to cause systemic and brain Mn accumulation. The lack of intestinal ZIP14-mediated Mn excretion was compensated for by the hepatobiliary system; however, it was not sufficient to maintain Mn homeostasis. When supplemented with extra dietary Mn, I-KO mice displayed some motor dysfunctions, brain Mn accumulation based on both MRI imaging and chemical analysis, thus demonstrating the importance of intestinal ZIP14 as a route of Mn excretion. A defect in intestinal Zip14 expresssion likely could contribute to the Parkinson-like Mn accumulation of manganism.
3

Compensatory functional connectome changes in a rat model of traumatic brain injury

Zhihui Yang et al.May 17, 2021
Abstract Penetrating cortical impact injuries alter neuronal communication beyond the injury epicenter, across regions involved in affective, sensorimotor, and cognitive processing. Understanding how traumatic brain injury (TBI) reorganizes local and brain wide nodal functional interactions may provide valuable quantitative parameters for monitoring pathological progression and functional recovery. To this end, we investigated spontaneous fluctuations in the functional magnetic resonance imaging (fMRI) signal obtained at 11.1 Tesla in rats sustaining controlled cortical impact (CCI) and imaged at 2- and 30-days post-injury. Graph theory-based calculations were applied to weighted undirected matrices constructed from 12,879 pairwise correlations between fMRI signals from 162 regions. Our data indicate that on days 2 and 30 post-CCI there is a significant increase in connectivity strength in nodes located in contralesional cortical, thalamic, and basal forebrain areas. Rats imaged on day 2 post-injury had significantly greater network modularity than controls, with influential nodes (with high eigenvector centrality) contained within the contralesional module and participating less in cross-modular interactions. By day 30, modularity and cross-modular interactions recover, although a cluster of nodes with low strength and low eigenvector centrality remain in the ipsilateral cortex. Our results suggest that changes in node strength, modularity, eigenvector centrality, and participation coefficient track early and late TBI effects on brain functional connectivity. We propose that the observed compensatory functional connectivity reorganization in response to CCI may be unfavorable to brain wide communication in the early post-injury period.