NW
Neil Weisenfeld
Author with expertise in RNA Sequencing Data Analysis
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
9
(78% Open Access)
Cited by:
2,754
h-index:
24
/
i10-index:
32
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: Evidence from a novel positron emission tomography method

Alan Breier et al.Mar 18, 1997
+8
R
T
A
A major line of evidence that supports the hypothesis of dopamine overactivity in schizophrenia is the psychomimetic potential of agents such as amphetamine that stimulate dopamine outflow. A novel brain imaging method provides an indirect measure of in vivo synaptic dopamine concentration by quantifying the change in dopamine receptor radiotracer binding produced by agents that alter dopamine release but do not themselves bind to dopamine receptors. The purpose of this investigation is ( i ) to determine the sensitivity (i.e., amount of dopamine reflected in radiotracer binding changes) of this method by examining the relationship between amphetamine-induced changes in simultaneously derived striatal extracellular dopamine levels with in vivo microdialysis and striatal binding levels with the dopamine D 2 /D 3 positron-emission tomography radioligand [ 11 C]raclopride in nonhuman primates, and ( ii ) to test the hypothesis of elevated amphetamine-induced synaptic dopamine levels in schizophrenia. In the nonhuman primate study ( n = 4), doubling the amphetamine dose produced a doubling in [ 11 C]raclopride specific binding reductions. In addition, the ratio of percent mean dopamine increase to percent mean striatal binding reduction for amphetamine (0.2 mg/kg) was 44:1, demonstrating that relatively small binding changes reflect large changes in dopamine outflow. In the clinical study, patients with schizophrenia ( n = 11) compared with healthy volunteers ( n = 12) had significantly greater amphetamine-related reductions in [ 11 C]raclopride specific binding (mean ± SEM): −22.3% (±2.7) vs. −15.5% (±1.8), P = 0.04, respectively. Inferences from the preclinical study suggest that the patients’ elevation in synaptic dopamine concentrations was substantially greater than controls. These data provide direct evidence for the hypothesis of elevated amphetamine-induced synaptic dopamine concentrations in schizophrenia.
1

Direct determination of diploid genome sequences

Neil Weisenfeld et al.Apr 5, 2017
+2
P
V
N
Determining the genome sequence of an organism is challenging, yet fundamental to understanding its biology. Over the past decade, thousands of human genomes have been sequenced, contributing deeply to biomedical research. In the vast majority of cases, these have been analyzed by aligning sequence reads to a single reference genome, biasing the resulting analyses, and in general, failing to capture sequences novel to a given genome. Some de novo assemblies have been constructed free of reference bias, but nearly all were constructed by merging homologous loci into single "consensus" sequences, generally absent from nature. These assemblies do not correctly represent the diploid biology of an individual. In exactly two cases, true diploid de novo assemblies have been made, at great expense. One was generated using Sanger sequencing, and one using thousands of clone pools. Here, we demonstrate a straightforward and low-cost method for creating true diploid de novo assemblies. We make a single library from ∼1 ng of high molecular weight DNA, using the 10x Genomics microfluidic platform to partition the genome. We applied this technique to seven human samples, generating low-cost HiSeq X data, then assembled these using a new "pushbutton" algorithm, Supernova. Each computation took 2 d on a single server. Each yielded contigs longer than 100 kb, phase blocks longer than 2.5 Mb, and scaffolds longer than 15 Mb. Our method provides a scalable capability for determining the actual diploid genome sequence in a sample, opening the door to new approaches in genomic biology and medicine.
1
Citation780
0
Save
0

A single-cell and spatially resolved atlas of human breast cancers

Sunny Wu et al.Sep 1, 2021
+37
D
G
S
Breast cancers are complex cellular ecosystems where heterotypic interactions play central roles in disease progression and response to therapy. However, our knowledge of their cellular composition and organization is limited. Here we present a single-cell and spatially resolved transcriptomics analysis of human breast cancers. We developed a single-cell method of intrinsic subtype classification (SCSubtype) to reveal recurrent neoplastic cell heterogeneity. Immunophenotyping using cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) provides high-resolution immune profiles, including new PD-L1/PD-L2+ macrophage populations associated with clinical outcome. Mesenchymal cells displayed diverse functions and cell-surface protein expression through differentiation within three major lineages. Stromal-immune niches were spatially organized in tumors, offering insights into antitumor immune regulation. Using single-cell signatures, we deconvoluted large breast cancer cohorts to stratify them into nine clusters, termed 'ecotypes', with unique cellular compositions and clinical outcomes. This study provides a comprehensive transcriptional atlas of the cellular architecture of breast cancer.
0
Citation737
0
Save
0

Direct determination of diploid genome sequences

Neil Weisenfeld et al.Aug 19, 2016
+2
P
V
N
ABSTRACT Determining the genome sequence of an organism is challenging, yet fundamental to understanding its biology. Over the past decade, thousands of human genomes have been sequenced, contributing deeply to biomedical research. In the vast majority of cases, these have been analyzed by aligning sequence reads to a single reference genome, biasing the resulting analyses and, in general, failing to capture sequences novel to a given genome. Some de novo assemblies have been constructed, free of reference bias, but nearly all were constructed by merging homologous loci into single ‘consensus’ sequences, generally absent from nature. These assemblies do not correctly represent the diploid biology of an individual. In exactly two cases, true diploid de novo assemblies have been made, at great expense. One was generated using Sanger sequencing and one using thousands of clone pools. Here we demonstrate a straightforward and low-cost method for creating true diploid de novo assemblies. We make a single library from ~1 ng of high molecular weight DNA, using the 10x Genomics microfluidic platform to partition the genome. We applied this technique to seven human samples, generating low-cost HiSeq X data, then assembled these using a new ‘pushbutton’ algorithm, Supernova. Each computation took two days on a single server. Each yielded contigs longer than 100 kb, phase blocks longer than 2.5 Mb, and scaffolds longer than 15 Mb. Our method provides a scalable capability for determining the actual diploid genome sequence in a sample, opening the door to new approaches in genomic biology and medicine.
0
Citation54
0
Save
0

A single-cell and spatially resolved atlas of human breast cancers

S.Z Wu et al.Jan 1, 2021
+37
D
G
S
0
Citation34
0
Save
148

Cell-type, single-cell, and spatial signatures of brain-region specific splicing in postnatal development

Anoushka Joglekar et al.Aug 27, 2020
+25
B
S
A
Abstract Alternative RNA splicing varies across brain regions, but the single-cell resolution of such regional variation is unknown. Here we present the first single-cell investigation of differential isoform expression (DIE) between brain regions, by performing single cell long-read transcriptome sequencing in the mouse hippocampus and prefrontal cortex in 45 cell types at postnatal day 7 ( www.isoformAtlas.com ). Using isoform tests for brain-region specific DIE, which outperform exon-based tests, we detect hundreds of brain-region specific DIE events traceable to specific cell-types. Many DIE events correspond to functionally distinct protein isoforms, some with just a 6-nucleotide exon variant. In most instances, one cell type is responsible for brain-region specific DIE. Cell types indigenous to only one anatomic structure display distinctive DIE, where for example, the choroid plexus epithelium manifest unique transcription start sites. However, for some genes, multiple cell-types are responsible for DIE in bulk data, indicating that regional identity can, although less frequently, override cell-type specificity. We validated our findings with spatial transcriptomics and long-read sequencing, yielding the first spatially resolved splicing map in the postnatal mouse brain ( www.isoformAtlas.com ). Our methods are highly generalizable. They provide a robust means of quantifying isoform expression with cell-type and spatial resolution, and reveal how the brain integrates molecular and cellular complexity to serve function.
148
Citation4
0
Save
0

Reference Quality Assembly of the 3.5 Gb genome of Capsicum annuum from a Single Linked-Read Library

Amanda Hulse‐Kemp et al.Jun 20, 2017
+10
K
S
A
Abstract Background Linked-Read sequencing technology has recently been employed successfully for de novo assembly of multiple human genomes, however the utility of this technology for complex plant genomes is unproven. We evaluated the technology for this purpose by sequencing the 3.5 gigabase (Gb) diploid pepper (Capsicum annuum) genome with a single Linked-Read library. Plant genomes, including pepper, are characterized by long, highly similar repetitive sequences. Accordingly, significant effort is used to ensure the sequenced plant is highly homozygous and the resulting assembly is a haploid consensus. With a phased assembly approach, we targeted a heterozygous F 1 derived from a wide cross to assess the ability to derive both haplotypes for a pungency gene characterized by a large insertion/deletion. Results The Supernova software generated a highly ordered, more contiguous sequence assembly than all currently available C. annuum reference genomes. Eighty-four percent of the final assembly was anchored and oriented using four de novo linkage maps. A comparison of the annotation of conserved eukaryotic genes indicated the completeness of assembly. The validity of the phased assembly is further demonstrated with the complete recovery of both 2.5 kb insertion/deletion haplotypes of the PUN1 locus in the F 1 sample that represents pungent and non-pungent peppers. Conclusions The most contiguous pepper genome assembly to date has been generated through this work which demonstrates that Linked-Read library technology provides a rapid tool to assemble de novo complex highly repetitive heterozygous plant genomes. This technology can provide an opportunity to cost-effectively develop high-quality reference genome assemblies for other complex plants and compare structural and gene differences through accurate haplotype reconstruction.
0
Citation2
0
Save
0

Dissecting the Causal Mechanism of X-Linked Dystonia-Parkinsonism by Integrating Genome and Transcriptome Assembly

Tatsiana Aneichyk et al.Jun 14, 2017
+24
R
W
T
X-linked Dystonia-Parkinsonism (XDP) is a Mendelian neurodegenerative disease endemic to the Philippines. We integrated genome and transcriptome assembly with induced pluripotent stem cell-based modeling to identify the XDP causal locus and potential pathogenic mechanism. Genome sequencing identified novel variation that was shared by all probands and three recombination events that narrowed the causal locus to a genomic segment including TAF1. Transcriptome assembly in neural derivative cells discovered novel TAF1 transcripts, including a truncated transcript exclusively observed in probands that involved aberrant splicing and intron retention (IR) associated with a SINE-VNTR-Alu (SVA)-type retrotransposon insertion. This IR correlated with decreased expression of the predominant TAF1 transcript and altered expression of neurodevelopmental genes; both the IR and aberrant TAF1 expression patterns were rescued by CRISPR/Cas9 excision of the SVA. These data suggest a unique genomic cause of XDP and may provide a roadmap for integrative genomic studies in other unsolved Mendelian disorders.
0

Improved de novo Genome Assembly: Linked-Read Sequencing Combined with Optical Mapping Produce a High Quality Mammalian Genome at Relatively Low Cost

David Mohr et al.Apr 18, 2017
+6
N
A
D
Current short-read methods have come to dominate genome sequencing because they are cost-effective, rapid, and accurate. However, short reads are most applicable when data can be aligned to a known reference. Two new methods for de novo assembly are linked-reads and restriction-site labeled optical maps. We combined commercial applications of these technologies for genome assembly of an endangered mammal, the Hawaiian Monk seal. We show that the linked-reads produced with 10X Genomics Chromium chemistry and assembled with Supernova v1.1 software produced scaffolds with an N50 of 22.23 Mbp with the longest individual scaffold of 84.06 Mbp. When combined with Bionano Genomics optical maps using Bionano RefAligner, the scaffold N50 increased to 29.65 Mbp for a total of 170 hybrid scaffolds, the longest of which was 84.78 Mbp. These results were 161X and 215X, respectively, improved over DISCOVAR de novo assemblies. The quality of the scaffolds was assessed using conserved synteny analysis of both the DNA sequence and predicted seal proteins relative to the genomes of humans and other species. We found large blocks of conserved synteny suggesting that the hybrid scaffolds were high quality. An inversion in one scaffold complementary to human chromosome 6 was found and confirmed by optical maps. The complementarity of linked-reads and optical maps is likely to make the production of high quality genomes more routine and economical and, by doing so, significantly improve our understanding of comparative genome biology.