RS
Reza Salek
Author with expertise in Advances in Metabolomics Research
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
11
(64% Open Access)
Cited by:
1,752
h-index:
40
/
i10-index:
74
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

MetaboLights—an open-access general-purpose repository for metabolomics studies and associated meta-data

Kenneth Haug et al.Oct 29, 2012
MetaboLights (http://www.ebi.ac.uk/metabolights) is the first general-purpose, open-access repository for metabolomics studies, their raw experimental data and associated metadata, maintained by one of the major open-access data providers in molecular biology. Metabolomic profiling is an important tool for research into biological functioning and into the systemic perturbations caused by diseases, diet and the environment. The effectiveness of such methods depends on the availability of public open data across a broad range of experimental methods and conditions. The MetaboLights repository, powered by the open source ISA framework, is cross-species and cross-technique. It will cover metabolite structures and their reference spectra as well as their biological roles, locations, concentrations and raw data from metabolic experiments. Studies automatically receive a stable unique accession number that can be used as a publication reference (e.g. MTBLS1). At present, the repository includes 15 submitted studies, encompassing 93 protocols for 714 assays, and span over 8 different species including human, Caenorhabditis elegans, Mus musculus and Arabidopsis thaliana. Eight hundred twenty-seven of the metabolites identified in these studies have been mapped to ChEBI. These studies cover a variety of techniques, including NMR spectroscopy and mass spectrometry.
0
Citation627
0
Save
0

A metabolomic comparison of urinary changes in type 2 diabetes in mouse, rat, and human

Reza Salek et al.Dec 26, 2006
Type 2 diabetes mellitus is the result of a combination of impaired insulin secretion with reduced insulin sensitivity of target tissues. There are an estimated 150 million affected individuals worldwide, of whom a large proportion remains undiagnosed because of a lack of specific symptoms early in this disorder and inadequate diagnostics. In this study, NMR-based metabolomic analysis in conjunction with multivariate statistics was applied to examine the urinary metabolic changes in two rodent models of type 2 diabetes mellitus as well as unmedicated human sufferers. The db/db mouse and obese Zucker ( fa/fa) rat have autosomal recessive defects in the leptin receptor gene, causing type 2 diabetes. 1 H-NMR spectra of urine were used in conjunction with uni- and multivariate statistics to identify disease-related metabolic changes in these two animal models and human sufferers. This study demonstrates metabolic similarities between the three species examined, including metabolic responses associated with general systemic stress, changes in the TCA cycle, and perturbations in nucleotide metabolism and in methylamine metabolism. All three species demonstrated profound changes in nucleotide metabolism, including that of N-methylnicotinamide and N-methyl-2-pyridone-5-carboxamide, which may provide unique biomarkers for following type 2 diabetes mellitus progression.
0
Citation397
0
Save
0

Galaxy-Kubernetes integration: scaling bioinformatics workflows in the cloud

Pablo Moreno‐Ger et al.Dec 7, 2018
Summary Making reproducible, auditable and scalable data-processing analysis workflows is an important challenge in the field of bioinformatics. Recently, software containers and cloud computing introduced a novel solution to address these challenges. They simplify software installation, management and reproducibility by packaging tools and their dependencies. In this work we implemented a cloud provider agnostic and scalable container orchestration setup for the popular Galaxy workflow environment. This solution enables Galaxy to run on and offload jobs to most cloud providers (e.g. Amazon Web Services, Google Cloud or OpenStack, among others) through the Kubernetes container orchestrator. Availability All code has been contributed to the Galaxy Project and is available (since Galaxy 17.05) at https://github.com/galaxyproject/ in the galaxy and galaxy-kubernetes repositories. https://public.phenomenal-h2020.eu/ is an example deployment. Suppl. Information Supplementary Files are available online. Contact pmoreno@ebi.ac.uk , European Molecular Biology Laboratory, EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK, Tel: +44-1223-494267, Fax: +44-1223-484696.
0

PhenoMeNal: Processing and analysis of Metabolomics data in the Cloud

Kristian Peters et al.Sep 6, 2018
Abstract Background Metabolomics is the comprehensive study of a multitude of small molecules to gain insight into an organism’s metabolism. The research field is dynamic and expanding with applications across biomedical, biotechnological and many other applied biological domains. Its computationally-intensive nature has driven requirements for open data formats, data repositories and data analysis tools. However, the rapid progress has resulted in a mosaic of independent – and sometimes incompatible – analysis methods that are difficult to connect into a useful and complete data analysis solution. Findings The PhenoMeNal (Phenome and Metabolome aNalysis) e-infrastructure provides a complete, workflow-oriented, interoperable metabolomics data analysis solution for a modern infrastructure-as-a-service (IaaS) cloud platform. PhenoMeNal seamlessly integrates a wide array of existing open source tools which are tested and packaged as Docker containers through the project’s continuous integration process and deployed based on a kubernetes orchestration framework. It also provides a number of standardized, automated and published analysis workflows in the user interfaces Galaxy, Jupyter, Luigi and Pachyderm. Conclusions PhenoMeNal constitutes a keystone solution in cloud infrastructures available for metabolomics. It provides scientists with a ready-to-use, workflow-driven, reproducible and shareable data analysis platform harmonizing the software installation and configuration through user-friendly web interfaces. The deployed cloud environments can be dynamically scaled to enable large-scale analyses which are interfaced through standard data formats, versioned, and have been tested for reproducibility and interoperability. The flexible implementation of PhenoMeNal allows easy adaptation of the infrastructure to other application areas and ‘omics research domains.
7

Information Retrieval using Machine Learning for Biomarker Curation in the Exposome-Explorer

André Lamúrias et al.Dec 22, 2020
Abstract In 2016, the International Agency for Research on Cancer, part of the World Health Organization, released the Exposome-Explorer, the first database dedicated to biomarkers of exposure for environmental risk factors for diseases. The database contents resulted from a manual literature search that yielded over 8500 citations, but only a small fraction of these publications were used in the final database. Manually curating a database is time-consuming and requires domain expertise to gather relevant data scattered throughout millions of articles. This work proposes a supervised machine learning approach to assist the previous manual literature retrieval process. The manually retrieved corpus of scientific publications used in the Exposome-Explorer was used as training and testing sets for the machine learning models (classifiers). Several parameters and algorithms were evaluated to predict an article’s relevance based on different datasets made of titles, abstracts and metadata. The top performance classifier was built with the Logistic Regression algorithm using the title and abstract set, achieving an F2-score of 70.1%. Furthermore, from 705 articles classified as relevant, we extracted 545 biomarkers, including 460 new candidate entries to the Exposome-Explorer database. Our methodology reduced the number of articles to be manually screened by the database curators by nearly 90%, while only misclassifying 22.1% of the relevant articles. We expect that this methodology can also be applied to similar biomarkers datasets or be adapted to assist the manual curation process of similar chemical or disease databases.
5

A new pipeline for the normalization and pooling of metabolomics data

Vivian Viallon et al.Jul 16, 2021
Abstract Pooling metabolomics data across studies is often desirable to increase the statistical power of the analysis. However, this can raise methodological challenges as several preanalytical and analytical factors could introduce differences in measured concentrations and variability between datasets. Specifically, different studies may use variable sample types (e.g., serum versus plasma) collected, treated and stored according to different protocols, and assayed in different laboratories using different instruments. To address these issues, a new pipeline was developed to normalize and pool metabolomics data through a set of sequential steps: (i) exclusions of the least informative observations and metabolites and removal of outliers; imputation of missing data; (ii) identification of the main sources of variability through PC-PR2 analysis; (iii) application of linear mixed models to remove unwanted variability, including samples’ originating study and batch, and preserve biological variations while accounting for potential differences in the residual variances across studies. This pipeline was applied to targeted metabolomics data acquired using Biocrates AbsoluteIDQ kits in eight case-control studies nested within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. Comprehensive examination of metabolomics measurements indicated that the pipeline improved the comparability of data across the studies. Our pipeline can be adapted to normalize other molecular data, including biomarkers as well as proteomics data, and could be used for pooling molecular datasets, for example in international consortia, to limit biases introduced by inter-study variability. This versatility of the pipeline makes our work of potential interest to molecular epidemiologists.
0

Interoperable and scalable data analysis with microservices: Applications in Metabolomics

Payam Khoonsari et al.Nov 3, 2017
Developing a robust and performant data analysis workflow that integrates all necessary components whilst still being able to scale over multiple compute nodes is a challenging task. We introduce a generic method based on the microservice architecture, where software tools are encapsulated as Docker containers that can be connected into scientific workflows and executed in parallel using the Kubernetes container orchestrator. The access point is a virtual research environment which can be launched on-demand on cloud resources and desktop computers. IT-expertise requirements on the user side are kept to a minimum, and established workflows can be re-used effortlessly by any novice user. We validate our method in the field of metabolomics on two mass spectrometry studies, one nuclear magnetic resonance spectroscopy study and one fluxomics study, showing that the method scales dynamically with increasing availability of computational resources. We achieved a complete integration of the major software suites resulting in the first turn-key workflow encompassing all steps for mass-spectrometry-based metabolomics including preprocessing, multivariate statistics, and metabolite identification. Microservices is a generic methodology that can serve any scientific discipline and opens up for new types of large-scale integrative science.
Load More