ΓΠ
Γεωργία Παναγιωταροπούλου
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
1,706
h-index:
11
/
i10-index:
11
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Mapping genomic loci implicates genes and synaptic biology in schizophrenia

Vassily Trubetskoy et al.Apr 8, 2022
Schizophrenia has a heritability of 60–80%1, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies. A genome-wide association study including over 76,000 individuals with schizophrenia and over 243,000 control individuals identifies common variant associations at 287 genomic loci, and further fine-mapping analyses highlight the importance of genes involved in synaptic processes.
0
Citation1,385
0
Save
0

RICOPILI: Rapid Imputation for COnsortias PIpeLIne

Max Lam et al.Apr 11, 2019
Motivation: Genome-wide association study (GWAS) analyses, at sufficient sample sizes and power, have successfully revealed biological insights for several complex traits. RICOPILI, an open sourced Perl-based pipeline was developed to address the challenges of rapidly processing large scale multi-cohort GWAS studies including quality control, imputation and downstream analyses. The pipeline is computationally efficient with portability to a wide range of high-performance computing (HPC) environments. Summary: RICOPILI was created as the Psychiatric Genomics Consortium (PGC) pipeline for GWAS and has been adopted by other users. The pipeline features i) technical and genomic quality control in case-control and trio cohorts ii) genome-wide phasing and imputation iv) association analysis v) meta-analysis vi) polygenic risk scoring and vii) replication analysis. Notably, a major differentiator from other GWAS pipelines, RICOPILI leverages on automated parallelization and cluster job management approaches for rapid production of imputed genome-wide data. A comprehensive meta-analysis of simulated GWAS data has been incorporated demonstrating each step of the pipeline. This includes all of the associated visualization plots, to allow ease of data interpretation and manuscript preparation. Simulated GWAS datasets are also packaged with the pipeline for user training tutorials and developer work. Availability and Implementation: RICOPILI has a flexible architecture to allow for ongoing development and incorporation of newer available algorithms and is adaptable to various HPC environments (QSUB, BSUB, SLURM and others). Specific links for genomic resources are either directly provided in this paper or via tutorials and external links. The central location hosting scripts and tutorials is found at this URL: https://sites.google.com/a/broadinstitute.org/RICOPILI/home .