JO
Justin O’Sullivan
Author with expertise in Regulation of Chromatin Structure and Function
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
29
(45% Open Access)
Cited by:
33
h-index:
37
/
i10-index:
79
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A transcription regulatory network within the ACE2 locus may promote a pro-viral environment for SARS-CoV-2 by modulating expression of host factors

Tayaza Fadason et al.Apr 15, 2020
+9
E
S
T
Abstract Introduction A novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was recently identified as the pathogen responsible for the COVID-19 outbreak. SARS-CoV-2 triggers severe pneumonia, which leads to acute respiratory distress syndrome and death in severe cases. As reported, SARS-CoV-2 is 80% genetically identical to the 2003 SARS-CoV virus. Angiotensin-converting enzyme 2 (ACE2) has been identified as the main receptor for entry of both SARS-CoV and SARS-CoV-2 into human cells. ACE2 is normally expressed in cardiovascular and lung type II alveolar epithelial cells, where it positively modulates the RAS system that regulates blood flow, pressure, and fluid homeostasis. Thus, virus-induced reduction of ACE2 gene expression is considered to make a significant contribution to severe acute respiratory failure. Chromatin remodeling plays a significant role in the regulation of ACE2 gene expression and the activity of regulatory elements within the genome. Methods Here, we integrated data on physical chromatin interactions within the genome organization (captured by Hi-C) with tissue-specific gene expression data to identify spatial expression quantitative trait loci (eQTLs) and thus regulatory elements located within the ACE2 gene. Results We identified regulatory elements within ACE2 that control the expression of PIR, CA5B, and VPS13C in the lung. The gene products of these genes are involved in inflammatory responses, de novo pyrimidine and polyamine synthesis, and the endoplasmic reticulum, respectively. Conclusion Our study, although limited by the fact that the identification of the regulatory interactions is putative until proven by targeted experiments, supports the hypothesis that viral silencing of ACE2 alters the activity of gene regulatory regions and promotes an intra-cellular environment suitable for viral replication.
0
Citation16
0
Save
6

A new method for determining ribosomal DNA copy number shows differences between Saccharomyces cerevisiae populations

Diksha Sharma et al.Jan 22, 2021
+4
K
N
D
Abstract Ribosomal DNA genes (rDNA) encode the major ribosomal RNAs (rRNA) and in eukaryotic genomes are typically present as one or more arrays of tandem repeats. Species have characteristic rDNA copy numbers, ranging from tens to thousands of copies, with the number thought to be redundant for rRNA production. However, the tandem rDNA repeats are prone to recombination-mediated changes in copy number, resulting in substantial intra-species copy number variation. There is growing evidence that these copy number differences can have phenotypic consequences. However, we lack a comprehensive understanding of what determines rDNA copy number, how it evolves, and what the consequences are, in part because of difficulties in quantifying copy number. Here, we developed a genomic sequence read approach that estimates rDNA copy number from the modal coverage of the rDNA and whole genome to help overcome limitations in quantifying copy number with existing mean coverage-based approaches. We validated our method using strains of the yeast Saccharomyces cerevisiae with previously-determined rDNA copy numbers, and then applied our pipeline to investigate rDNA copy number in a global sample of 788 yeast isolates. We found that wild yeast have a mean copy number of 92, consistent with what is reported for other fungi but much lower than in laboratory strains. We also show that different populations have different rDNA copy numbers. These differences can partially be explained by phylogeny, but other factors such as environment are also likely to contribute to population differences in copy number. Our results demonstrate the utility of the modal coverage method, and highlight the high level of rDNA copy number variation within and between populations. Author summary The ribosomal RNA gene repeats (rDNA) form large tandem repeat arrays in most eukaryote genomes. Their tandem arrangement makes the rDNA prone to copy number variation, and there is increasing evidence that this copy number variation has phenotypic consequences. However, difficulties in measuring rDNA copy number hamper investigation into rDNA copy number dynamics and their significance. Here we developed a novel bioinformatics method for measuring rDNA copy number from whole genome sequence data that is based on the modal sequence read coverage. We established parameters for optimal performance of the method and validated it using yeast strains of known rDNA copy numbers. We then applied the method to a dataset of almost 800 global yeast isolates and demonstrate that yeast populations have different rDNA copy numbers that partially correlate with phylogeny. Our work provides a simple and accurate method for determining rDNA copy number that leverages the growing number of whole genome datasets, and highlights the dynamic nature of rDNA copy number.
6
Citation5
0
Save
13

Establishing gene regulatory networks from Parkinson’s disease risk loci

Sophie Farrow et al.Apr 9, 2021
+4
S
W
S
Abstract The latest meta-analysis of genome wide association studies (GWAS) identified 90 independent single nucleotide polymorphisms (SNPs) across 78 genomic regions associated with Parkinson’s disease (PD), yet the mechanisms by which these variants influence the development of the disease remains largely elusive. To establish the functional gene regulatory networks associated with PD-SNPs, we utilised an approach combining spatial (chromosomal conformation capture) and functional (expression quantitative trait loci; eQTL) data. We identified 518 genes subject to regulation by 76 PD-SNPs across 49 tissues, that encompass 36 peripheral and 13 CNS tissues. Notably, one third of these genes were regulated via trans -acting mechanisms (distal; risk locus-gene separated by > 1Mb, or on different chromosomes). Of particular interest is the identification of a novel trans -eQTL-gene connection between rs10847864 and SYNJ1 in the adult brain cortex, highlighting a convergence between familial studies and PD GWAS loci for SYNJ1 (PARK20) for the first time. Furthermore, we identified 16 neuro-development specific eQTL-gene regulatory connections within the foetal cortex, consistent with hypotheses suggesting a neurodevelopmental involvement in the pathogenesis of PD. Through utilising Louvain clustering we extracted nine significant and highly intra-connected clusters within the entire gene regulatory network. The nine clusters are enriched for specific biological processes and pathways, some of which have not previously been associated with PD. Together, our results not only contribute to an overall understanding of the mechanisms and impact of specific combinations of PD-SNPs, but also highlight the potential impact gene regulatory networks may have when elucidating aetiological subtypes of PD.
13
Citation5
0
Save
5

Deciphering the genetic links between NAFLD and co-occurring conditions using a liver gene regulatory network

Sreemol Gokuladhas et al.Dec 10, 2021
+2
T
W
S
Abstract Background & Aims Non-alcoholic fatty liver disease (NAFLD) is a multi-system metabolic disease that co-occurs with various hepatic and extra-hepatic diseases. The phenotypic manifestation of NAFLD is primarily observed in the liver. Therefore, identifying liver-specific gene regulatory interactions between variants associated with NAFLD and multimorbid conditions may help to improve our understanding of underlying shared aetiology. Methods Here, we constructed a liver-specific gene regulatory network (LGRN) consisting of genome-wide spatially constrained expression quantitative trait loci (eQTLs) and their target genes. The LGRN was used to identify regulatory interactions involving NAFLD-associated genetic modifiers and their inter-relationships to other complex traits. Results and Conclusions We demonstrate that MBOAT7 and IL32 , which are associated with NAFLD progression, are regulated by spatially constrained eQTLs that are enriched for an association with liver enzyme levels. MBOAT7 transcript levels are also linked to eQTLs associated with cirrhosis, and other traits that commonly co-occur with NAFLD. In addition, genes that encode interacting partners of NAFLD-candidate genes within the liver-specific protein-protein interaction network were affected by eQTLs enriched for phenotypes relevant to NAFLD ( e . g . IgG glycosylation patterns, OSA). Furthermore, we identified distinct gene regulatory networks formed by the NAFLD-associated eQTLs in normal versus diseased liver, consistent with the context-specificity of the eQTLs effects. Interestingly, genes targeted by NAFLD-associated eQTLs within the LGRN were also affected by eQTLs associated with NAFLD-related traits ( e . g . obesity and body fat percentage). Overall, the genetic links identified between these traits expand our understanding of shared regulatory mechanisms underlying NAFLD multimorbidities.
5
Citation4
0
Save
4

Unravelling the shared genetic mechanisms underlying 18 autoimmune diseases using a systems approach

Sreemol Gokuladhas et al.Mar 29, 2021
+2
E
W
S
Abstract Autoimmune diseases (AiDs) are complex heterogeneous diseases characterized by hyperactive immune responses against self. Genome-wide association studies have identified thousands of single nucleotide polymorphisms (SNPs) associated with several AiDs. While these studies have identified a handful of pleiotropic loci that confer risk to multiple AiDs, they lack the power to detect shared genetic factors residing outside of these loci. Here, we integrated chromatin contact, expression quantitative trait loci and protein-protein interaction (PPI) data to identify genes that are regulated by both pleiotropic and non-pleiotropic SNPs. The PPI analysis revealed complex interactions between the shared and disease-specific genes. Furthermore, pathway enrichment analysis demonstrated that the shared genes co-occur with disease-specific genes within the same biological pathways. In conclusion, our results are consistent with the hypothesis that genetic risk loci associated with multiple AiDs converge on a core set of biological processes that potentially contribute to the emergence of polyautoimmunity.
4
Citation2
0
Save
1

De novo discovery of traits co-occurring with chronic obstructive pulmonary disease

Merryn Tawhai et al.Jul 21, 2022
+4
T
H
M
Abstract Epidemiological research indicates that chronic obstructive pulmonary disease (COPD) is a heterogeneous group of chronic lung conditions that are typically accompanied by cardiovascular disease, depression, lung cancer and other conditions. Genome-wide association studies (GWAS) have identified single-nucleotide polymorphisms (SNPs) associated with COPD and the co-occuring conditions, suggesting common biological mechanisms underlying COPD and these co-occuring conditions. To identify them, we have integrated information across different biological levels (i.e. genetic variants, lung-specific 3D genome structure, gene expression and protein-protein interactions) to build lung-specific gene regulatory and protein-protein interaction networks. We have queried these networks using disease-associated SNPs for COPD, unipolar depression and coronary artery disease. Our results show that COPD-associated SNPs can control genes involved in the regulation of lung or pulmonary function, asthma, brain region volumes, cortical surface area, depressed affect, neuroticism, Parkinson’s disease, white matter microstructure and smoking behaviour. We describe the regulatory connections, genes and biochemical pathways that underly these co-occuring trait-SNP-gene associations. Collectively, our findings provide new avenues for the investigation of the underlying biology and diverse clinical presentations of COPD. In so doing, we identify a collection of genetic variants and genes that may aid COPD patient stratification and treatment.
1
Citation1
0
Save
0

Type 1 diabetes mellitus-associated genetic variants contribute to overlapping immune regulatory networks

Denis Nyaga et al.May 17, 2018
+2
M
J
D
Type 1 diabetes (T1D) is a chronic metabolic disorder characterised by the autoimmune destruction of insulin-producing pancreatic islet beta cells in genetically predisposed individuals. Genome-wide association studies (GWAS) have identified over 60 risk loci across the human genome, marked by single nucleotide polymorphisms (SNPs), which confer genetic predisposition to T1D. There is increasing evidence that disease-associated SNPs can alter gene expression through spatial interactions that involve distal loci, in a tissue- and development-specific manner. Here, we used three-dimensional (3D) genome organization data to identify genes that physically co-localized with DNA regions that contained T1D-associated SNPs in the nucleus. Analysis of these SNP-gene pairs using the Genotype-Tissue Expression database identified a subset of SNPs that significantly affected gene expression. We identified 298 spatially regulated genes including HLA-DRB1, LAT, MICA, BTN3A2, CTLA4, CD226, NOTCH1, TRIM26, CLEC2B, TYK2, and FLRT3, which exhibit tissue-specific effects in multiple tissues. We observed that the T1D-associated variants interconnect through networks that form part of the immune regulatory pathways, including immune-cell activation, cytokine signalling, and programmed cell death protein-1 (PD-1). These pathways have been implicated in the pancreatic beta-cell inflammation and destruction as observed in T1D. Our results demonstrate that T1D-associated variants contribute to adaptive immune signalling, and immune-cell proliferation and activation through tissue and cell-type specific regulatory networks.
0

Low tolerance for transcriptional variation at cohesin genes is accompanied by functional links to disease-relevant pathways

William Schierding et al.Apr 13, 2020
J
J
W
Variants in DNA regulatory elements can alter the regulation of distant genes through spatial-regulatory connections. In humans, these spatial-regulatory connections are largely set during early development, when the cohesin complex plays an essential role in genome organisation and cell division. A full complement of the cohesin complex and its regulators is important for normal development, since heterozygous mutations in genes encoding these components are often sufficient to produce a disease phenotype. The implication that genes encoding the cohesin complex and cohesin regulators must be tightly controlled and resistant to variability in expression has not yet been formally tested. Here, we identify spatial-regulatory connections with potential to regulate expression of cohesin loci, including linking their expression to that of other genes. Connections that centre on the cohesin ring subunits (Mitotic: SMC1A, SMC3, STAG1, STAG2, RAD21/RAD21-AS; Meiotic: SMC1B, STAG3, REC8, RAD21L1), cohesin-ring support genes (NIPBL, MAU2, WAPL, PDS5A and PDS5B), and CTCF provide evidence of coordinated regulation that has little tolerance for perturbation. We identified transcriptional changes across a set of genes co-regulated with the cohesin loci that include biological pathways such as extracellular matrix production and proteasome-mediated protein degradation. Remarkably, many of the genes that are co-regulated with cohesin loci are themselves intolerant to loss-of-function. The results highlight the importance of robust regulation of cohesin genes, indicating novel pathways that may be important in the human cohesinopathy disorders.### Competing Interest StatementThe authors have declared no competing interest.
0

Variants at the ADAMTS13, BGALT5, SSBP2 and TKT Loci are associated with Post-term birth.

William Schierding et al.Jun 22, 2017
+13
A
S
W
Gestation is a crucial timepoint in human development. Deviation from a term gestational age correlates with both acute and long-term adverse health effects for the child. Both being born pre and post-term, i.e. having short and long gestational ages, are heritable and influenced by the pre- and perinatal environment. Despite the obvious heritable component, specific genetic influences underlying differences in gestational age are poorly understood. Here we identify one globally significant intronic genetic variant within the ADAMTS13 gene that is associated with prolonged gestation in 9,141 white European individuals from the 1966 and 1986 Northern Finland birth cohorts. Additional variants that reached suggestive levels of significance were identified within introns at the TKT, and ARGHAP42 genes, and in the upstream (5′) intergenic regions of the B3GALT5 and SSBP2 genes. The variants near the ADAMTS13, B3GALT5, SSBP2 and TKT loci are linked to alterations in gene expression levels (cis-eQTLs). Luciferase assays confirmed the allele specific enhancer activity for the BGALT5 and TKT loci. Our findings provide the first evidence of a specific genetic influence associated with prolonged gestation.
0

A DNA Contact Map for the Mouse Runx1 Gene Identifies Novel Hematopoietic Enhancers

Judith Marsman et al.Jun 11, 2017
+2
M
A
J
The transcription factor Runx1 is essential for definitive hematopoiesis, and the RUNX1 gene is frequently translocated or mutated in leukemia. Runx1 is transcribed from two promoters, P1 and P2, to give rise to different protein isoforms. Although the expression of Runx1 must be tightly regulated for normal blood development, the mechanisms that regulate Runx1 isoform expression during hematopoiesis remain poorly understood. Gene regulatory elements located in non-coding DNA are likely to be important for Runx1 transcription. Here we use circular chromosome conformation capture sequencing to identify DNA interactions with the P1 and P2 promoters of Runx1, and the previously identified +24 enhancer, in the mouse multipotent hematopoietic progenitor cell line HPC-7. The active promoter, P1, interacts with nine non-coding regions that are occupied by transcription factors within a 1 Mb topologically associated domain. Eight of nine regions function as blood-specific enhancers in zebrafish. Interestingly, the +24 enhancer interacted with multiple distant regions on chromosome 16, indicating it may regulate the expression of additional genes. The Runx1 DNA contact map identifies connections with multiple novel hematopoietic enhancers that are likely to be involved in regulating Runx1 expression in hematopoietic progenitor cells.
Load More