SM
Stephanie Marino
Author with expertise in Interoception and Somatic Symptoms
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
92
h-index:
7
/
i10-index:
5
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
83

Interoception of breathing and its relationship with anxiety

Olivia Harrison et al.Dec 1, 2021
+10
S
L
O
Interoception, the perception of internal bodily states, is thought to be inextricably linked to affective qualities such as anxiety. Although interoception spans sensory to metacognitive processing, it is not clear whether anxiety is differentially related to these processing levels. Here we investigated this question in the domain of breathing, using computational modeling and high-field (7 T) fMRI to assess brain activity relating to dynamic changes in inspiratory resistance of varying predictability. Notably, the anterior insula was associated with both breathing-related prediction certainty and prediction errors, suggesting an important role in representing and updating models of the body. Individuals with low versus moderate anxiety traits showed differential anterior insula activity for prediction certainty. Multi-modal analyses of data from fMRI, computational assessments of breathing-related metacognition, and questionnaires demonstrated that anxiety-interoception links span all levels from perceptual sensitivity to metacognition, with strong effects seen at higher levels of interoceptive processes.
83
Citation63
3
Save
39

Interoception of breathing and its relationship with anxiety

Olivia Harrison et al.Mar 26, 2021
+10
S
L
O
Summary Interoception, the perception of internal bodily states, is thought to be inextricably linked to affective qualities such as anxiety. While interoception spans sensory to metacognitive processing, it is not clear whether anxiety is differentially related to these processing levels. Here we investigated this question in the domain of breathing, using computational modelling and high-field (7 Tesla) fMRI to assess brain activity relating to dynamic changes in inspiratory resistance of varying predictability. Notably, the anterior insula was associated with both breathing-related prediction certainty and prediction errors, suggesting an important role in representing and updating models of the body. Individuals with low vs. moderate anxiety traits showed differential anterior insula activity for prediction certainty. Multimodal analyses of data from fMRI, computational assessments of breathing-related metacognition, and questionnaires demonstrated that anxiety-interoception links span all levels from perceptual sensitivity to metacognition, with strong effects seen at higher levels of interoceptive processes.
25

The Filter Detection Task for measurement of breathing-related interoception and metacognition

Olivia Harrison et al.Jun 29, 2020
+10
K
K
O
Abstract The study of the brain’s processing of sensory inputs from within the body (‘interoception’) has been gaining rapid popularity in neuroscience, where interoceptive disturbances are thought to exist across a wide range of chronic physiological and psychological conditions. Here we present a task and analysis procedure to quantify specific dimensions of breathing-related interoception, including interoceptive sensitivity (accuracy), decision bias, metacognitive bias, and metacognitive performance. Two major developments address some of the challenges presented by low trial numbers in interoceptive experiments: (i) a novel adaptive algorithm to maintain task performance at 70-75% accuracy; (ii) an extended hierarchical metacognitive model to estimate regression parameters linking metacognitive performance to relevant (e.g. clinical) variables. We demonstrate the utility of the task and analysis developments, using both simulated data and three empirical datasets. This methodology represents an important step towards accurately quantifying interoceptive dimensions from a simple experimental procedure that is compatible with clinical settings.
0

Bayesian Workflow for Generative Modeling in Computational Psychiatry

Alexander Hess et al.Feb 22, 2024
+8
L
S
A
Abstract Computational (generative) modelling of behaviour has considerable potential for clinical applications. In order to unlock the potential of generative models, reliable statistical inference is crucial. For this, Bayesian workflow has been suggested which, however, has rarely been applied in Translational Neuromodeling and Computational Psychiatry (TN/CP) so far. Here, we present a worked example of Bayesian workflow in the context of a typical application scenario for TN/CP. This application example uses Hierarchical Gaussian Filter (HGF) models, a family of computational models for hierarchical Bayesian belief updating. When equipped with a suitable response model, HGF models can be fit to behavioural data from cognitive tasks; these data frequently consist of binary responses and are typically univariate. This poses challenges for statistical inference due to the limited information contained in such data. We present a novel set of response models that allow for simultaneous inference from multivariate (here: two) behavioural data types. Using both simulations and empirical data from a speed-incentivised associative reward learning (SPIRL) task, we show that harnessing information from two different data streams (binary responses and continuous response times) improves the accuracy of inference (specifically, identifiability of parameters and models). Moreover, we find a linear relationship between log-transformed response times in the SPIRL task and participants’ uncertainty about the outcome. Our analysis illustrates the benefits of Bayesian workflow for a typical use case in TN/CP. We argue that adopting Bayesian workflow for generative modelling helps increase the transparency and robustness of results, which in turn is of fundamental importance for the long-term success of TN/CP.